EXPLORING THE POTENTIAL OF HERBAL THERAPY IN COVID-19

Authors

  • HARITA DESAI Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India
  • ADITYA MHATRE Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India
  • RASHMI SINGH Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India
  • GAURI LOKHANDE Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India
  • ASHWINI KONDHARE Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India
  • SAKSHI BUNDAKE Department of Pharmaceutics, Bombay College of Pharmacy, Santacruz East, Mumbai-400098, India

DOI:

https://doi.org/10.22159/ijcpr.2023v15i6.4003

Keywords:

Remdesivir, Herbal, In silico, COVID-19, Anti-viral, Phytoconstituents

Abstract

The world has been facing the deadly coronavirus for a stretch of period now and with the innovation and latest research, the development of vaccines has been possible. The initial duration wherein the vaccines were under trials the most opted choice was the use of modern drug like Remdesivir along with other existing daily supplements. This review article describes the various pathogenic mechanism of action by which the virus attacks and replicates inside the body. It briefly gives the role of modern allopathy drugs, the use of traditional Ayurvedic medicines and herbs which act by discrete mechanism. It also focuses on the traditional herbs acting as drugs and supplements which could be prophylactic and hence used for the management of mild to moderate COVID conditions. Herbal agents like Ocimum sanctum, Curcuma longa, Withaniasomnifera, Glycyrrhiza glabra, Andrographis paniculata, Zingiber officinale etc. can have different antiviral actions which were used during the COVID-19 outbreak and have shown good margin of efficacy. Phytoconstituents like quercetin, fenugreek, liquorice etc. have shown to have activities like anti-viral, anti-inflammatory, immunomodulatory action, which is studied further in in silico modelling and by molecular docking. The significant use of these herbs and phytoconstituents which have contributed for preventive action has been described.

Downloads

Download data is not yet available.

References

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. doi: 10.1038/s41591-020-0820-9, PMID 32284615.

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. 2021;54(2):159-63. doi: 10.1016/j.jmii.2020.03.022, PMID 32265180.

Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020 May 18;39(10):e105114. doi: 10.15252/embj.20105114, PMID 32246845.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020 Apr;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058, PMID 32155444.

Ashour HM, Elkhatib WF, Rahman MdM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 2020 Mar 4;9(3):186. doi: 10.3390/pathogens9030186, PMID 32143502.

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0, PMID 31133031.

Khan RJ, Jha RK, Amera GM, Jain M, Singh E, Pathak A. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J Biomol Struct Dyn. 2021 May;39(8):2679-92. doi: 10.1080/07391102.2020.1753577, PMID 32266873, PMCID PMC7189412.

Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020 Jul;81:104260. doi: 10.1016/j.meegid.2020.104260, PMID 32092483.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. Author correction: a new coronavirus associated with human respiratory disease in China. Nature. 2020 Apr;580(7803):E7. doi: 10.1038/s41586-020-2202-3. Erratum for: Nature. 2020 Mar;579(7798):265-9. PMID 32296181, PMCID PMC7608129.

Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020;130(5):2202-5. doi: 10.1172/JCI137647, PMID 32217834.

Gandhi S, Taylor J, Welsh S, Puvaneswaran B, Lorden C, Duncan C. COVID-19 management in a UK tertiary centre intensive care Unit: nutritional status, intervention and outcome. Clin Nutr ESPEN. 2022 Apr;48:492. doi: 10.1016/j.clnesp.2022.02.042, PMCID PMC8937549.

Serafino A, Sinibaldi Vallebona P, Andreola F, Zonfrillo M, Mercuri L, Federici M. Stimulatory effect of eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol. 2008 Apr 18;9:17. doi: 10.1186/1471-2172-9-17, PMID 18423004, PMCID PMC2374764.

Kumar M, Al Khodor S. Pathophysiology and treatment strategies for COVID-19. J Transl Med. 2020;18(1):353. doi: 10.1186/s12967-020-02520-8, PMID 32933536.

Huang J, Tao G, Liu J, Cai J, Huang Z, Chen JX. Current prevention of COVID-19: natural products and herbal medicine. Front Pharmacol. 2020;11:588508. doi: 10.3389/fphar.2020.588508, PMID 33178026.

Xu J, Zhang Y. Traditional Chinese medicine treatment of COVID-19. Complement Ther Clin Pract. 2020;39:101165. doi: 10.1016/j.ctcp.2020.101165, PMID 32379692.

Zhang B, Qi F. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19. BioSci Trends. 2023 Feb 28;17(1):14-20. doi: 10.5582/bst.2022.01534, PMID 36596560.

Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S. Potential herb-drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B. 2023 Jun 5;13(9):3598-637. doi: 10.1016/j.apsb.2023.06.001. PMID 37360014, PMCID PMC10239737.

Chavda VP, Patel AB, Vihol D, Vaghasiya DD, Ahmed KMSB, Trivedi KU. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: an update. Clin Complement Med Pharmacol. 2022;2(1):100021. doi: 10.1016/j.ccmp.2022.100021, PMID 36620357.

Gheware A, Dholakia D, Kannan S, Panda L, Rani R, Pattnaik BR. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: potential for repurposing in COVID-19-like conditions. Respir Res. 2021 Apr 6;22(1):99. doi: 10.1186/s12931-021-01698-9, PMID 33823870, PMCID PMC8022127.

Balkrishna A, Ben Bhatt AB, Singh P, Haldar S, Varshney A. Comparative retrospective open-label study of ayurvedic medicines and their combination with allopathic drugs on asymptomatic and mildly symptomatic COVID-19 patients. J Herb Med. 2021 Oct;29:100472. doi: 10.1016/j.hermed.2021.100472, PMID 34055580.

Jena S, Munusami P, Mm B, Chanda K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virus Disease. 2021 Mar 20;32(1):65-77. doi: 10.1007/s13337-021-00666-7, PMID 33778129.

Woo SY, Win NN, Noe Oo WM, Ngwe H, Ito T, Abe I. Viral protein R inhibitors from Swertia chirata of Myanmar. J Biosci Bioeng. 2019 Oct;128(4):445-9. doi: 10.1016/j.jbiosc.2019.04.006, PMID 31076338.

Paul V, Tripathi AD, Agarwal A, Mahato DK, Srivastava K, Maurya KK. Herbs-derived phytochemicals-a boon for combating COVID-19. Vegetos. 2023 Mar 14. doi: 10.1007/s42535-023-00601-9.

Alshatwi AA. Bioactivity-guided identification to delineate the immunomodulatory effects of methanolic extract of Nigella sativa seed on human peripheral blood mononuclear cells. Chin J Integr Med. 2014 Mar 2. doi: 10.1007/s11655-013-1534-3, PMID 24584754.

Imran M, Khan SA, Abida AMK, Alshammari MK, Alkhaldi SM, Alshammari FN. Nigella sativa L. and COVID-19: a glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules. 2022 Apr 25;27(9):2750. doi: 10.3390/molecules27092750, PMID 35566101, PMCID PMC9105261.

Reyes Mansilla R, Cuentas Robles A, Ramos Perfecto D. Camellia sinensis, a natural product to support the treatment of medical and stomatological conditions. J Oral Res. 2023 Jul 9;12(1):24-34. doi: 10.17126/joralres.2023.003.

Nguyen TT, Woo HJ, Kang HK, Nguyen VD, Kim YM, Kim DW. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in pichia pastoris. Biotechnol Lett. 2012 May;34(5):831-8. doi: 10.1007/s10529-011-0845-8, PMID 22350287, PMCID PMC7087583.

Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomedicine. 2021;85:153286. doi: 10.1016/j.phymed.2020.153286, PMID 32741697.

Wang YQ, Li QS, Zheng XQ, Lu JL, Liang YR. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules. 2021;26(13). doi: 10.3390/molecules26133962, PMID 34209485.

Hossain MA, Kim JH. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: a systematic review. J Ginseng Res. 2022;46(3):321-30. doi: 10.1016/j.jgr.2022.01.003, PMID 35068945.

Zhuang W, Fan Z, Chu Y, Wang H, Yang Y, Wu L. Chinese patent medicines in the treatment of coronavirus disease 2019 (COVID-19) in China. Front Pharmacol. Chinese Patent Medicines. 2020;11:1066. doi: 10.3389/fphar.2020.01066, PMID 32848729, PMCID PMC7396557.

Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res. 2021 Oct;172:105820. doi: 10.1016/j.phrs.2021.105820, PMID 34403732, PMCID PMC8364251.

Sheikh HI, Zakaria NH, Abdul Majid FA, Zamzuri F, Fadhlina A, Hairani MAS. Promising roles of Zingiber officinale roscoe, Curcuma longa L., and Momordica charantia L. as immunity modulators against COVID-19: a bibliometric analysis. J Agric Food Res. 2023 Dec;14:100680. doi: 10.1016/j.jafr.2023.100680, PMID 37346755.

Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: is there enough evidence? J Trad Chin Med Sci. 2021 Oct;8(4):267-79. doi: 10.1016/j.jtcms.2021.10.001.

Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51. doi: 10.1016/j.jep.2012.10.043, PMID 23123794.

Khan AU, Rahim A, Iqbal Z, Gilani AH. Insights into mechanisms underlying the gut and airways modulatory effects of swertia chirata. J Nat Med. 2012;66(1):140-8. doi: 10.1007/s11418-011-0566-2, PMID 21792726.

Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants-Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and ocimum sanctum (Tulsi)-a molecular docking study. J Biomol Struct Dyn. 2022 Jan;40(1):190-203. doi: 10.1080/07391102.2020.1810778, PMID 32851919, PMCID PMC7484581.

Saggam A, Limgaokar K, Borse S, Chavan Gautam P, Dixit S, Tillu G. Withania somnifera (L.) Dunal: opportunity for clinical repurposing in COVID-19 management. Front Pharmacol. 2021 May 3;12:623795. doi: 10.3389/fphar.2021.623795, PMID 34012390, PMCID PMC8126694.

Manish D, Manisha P, Khan S, Ruchi T, Muhammad B, Kuldeep D. Medicinal and therapeutic potential of withanolides from Withania somnifera against COVID-19. J Appl Pharm Sci. 2021 Apr 5. doi: 10.7324/JAPS.2021.110402.

Khubber S, Hashemifesharaki R, Mohammadi M, Gharibzahedi SMT. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr J. 2020;19(1). doi: 10.1186/s12937-020-00643-8.

Hashemifesharaki R, Gharibzahedi SMT. Future nutrient-dense diets rich in vitamin D: a new insight toward the reduction of adverse impacts of viral infections similar to COVID-19. Nutrire. 2020 Dec 13;45(2):19. doi: 10.1186/s41110-020-00122-4.

Hsieh CC, Peng WH, Tseng HH, Liang SY, Chen LJ, Tsai JC. The protective role of garlic on allergen-induced airway inflammation in mice. Am J Chin Med. 2019 Jan 15;47(5):1099-112. doi: 10.1142/S0192415X19500563, PMID 31366207.

Gil C, Ginex T, Maestro I, Nozal V, Barrado Gil L, Cuesta Geijo MA. COVID-19: drug targets and potential treatments. J Med Chem. 2020 Nov 12;63(21):12359-86. doi: 10.1021/acs.jmedchem.0c00606, PMID 32511912.

Sukardiman EM, Ervina MRF, Fadhil Pratama MR, Poerwono H, Siswodihardjo S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f) ness. J Adv Pharm Technol Res. 2020;11(4):157-62. doi: 10.4103/japtr.JAPTR_84_20, PMID 33425697.

Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A comprehensive review of andrographis paniculata (Burm. f.) nees and its constituents as potential lead compounds for COVID-19 drug discovery. Molecules. 2022 Jul 13;27(14):4479. doi: 10.3390/molecules27144479, PMID 35889352.

Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn. 2021;39(9):3092-8. doi: 10.1080/07391102.2020.1760136, PMID 32329419.

Wylie MR, Merrell DS. The antimicrobial potential of the neem tree Azadirachta indica. Front Pharmacol. 2022 May 30;13:891535. doi: 10.3389/fphar.2022.891535, PMID 35712721.

Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn. 2021;39(11):4111-21. doi: 10.1080/07391102.2020.1774419, PMID 32462988.

Lim XY, Teh BP, Tan TYC. Medicinal plants in COVID-19: potential and limitations. Front Pharmacol. 2021;12:611408. doi: 10.3389/fphar.2021.611408, PMID 33841143.

Mondal S, Varma S, Bamola VD, Naik SN, Mirdha BR, Padhi MM. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum linn.) leaf extract on healthy volunteers. J Ethnopharmacol. 2011 Jul 14;136(3):452-6. doi: 10.1016/j.jep.2011.05.012, PMID 21619917.

Baliga MS, Jimmy R, Thilakchand KR, Sunitha V, Bhat NR, Saldanha E. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer. 2013;65Suppl 1:26-35. doi: 10.1080/01635581.2013.785010, PMID 23682780.

Jamshidi N, Cohen MM. The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature. Evid Based Complement Alternat Med. 2017;2017:9217567. doi: 10.1155/2017/9217567, PMID 28400848.

Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants-Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)-a molecular docking study. J Biomol Struct Dyn. 2022 Jan;40(1):190-203. doi: 10.1080/07391102.2020.1810778, PMID 32851919, PMCID PMC7484581.

Issa SS, Sokornova SV, Zhidkin RR, Matveeva TV. The main protease of SARS-CoV-2 as a target for phytochemicals against coronavirus. Plants (Basel). 2022;11(14). doi: 10.3390/plants11141862, PMID 35890496.

Ahmad A, Abuzinadah MF, Alkreathy HM, Banaganapalli B, Mujeeb M. Ursolic acid rich ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: pharmacological and docking studies. PLOS ONE. 2018;13(3):e0193451. doi: 10.1371/journal.pone.0193451, PMID 29558494.

Arshad L, Jantan I, Bukhari SNA, Haque MA. Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives, on immune cells: a review. Front Pharmacol. 2017;8:22. doi: 10.3389/fphar.2017.00022, PMID 28194110.

Chavda VP, Patel AB, Vihol D, Vaghasiya DD, Ahmed KMSB, Trivedi KU. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: an update. Clin Complement Med Pharmacol. 2022;2(1):100021. doi: 10.1016/j.ccmp.2022.100021, PMID 36620357.

Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional herbal medicine candidates as complementary treatments for COVID-19: a review of their mechanisms, pros and cons. Evid Based Complement Alternat Med. 2020;2020:2560645. doi: 10.1155/2020/2560645, PMID 33101440.

Patel JR, Tripathi P, Sharma V, Chauhan NS, Dixit VK. Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol. 2011;138(2):286-313. doi: 10.1016/j.jep.2011.09.040, PMID 21982793.

Chatterjee A, Chattopadhyay S, Bandyopadhyay SK. Biphasic effect of phyllanthus emblica L. extract on NSAID-induced ulcer: an antioxidative trail weaved with immunomodulatory effect. Evid Based Complement Alternat Med. 2011;2011:146808. doi: 10.1155/2011/146808, PMID 21076542.

Gul M, Liu ZW, Iahtisham-Ul-Haq RR, Rabail R, Faheem F, Walayat N. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): a review. Antioxidants (Basel). 2022 Apr 22;11(5):816. doi: 10.3390/antiox11050816, PMID 35624683, PMCID PMC9137578.

Nowak W, Jeziorek M. The role of flaxseed in improving human health. Healthcare (Basel). 2023 Jan 30;11(3):395. doi: 10.3390/healthcare11030395, PMID 36766971.

Liang S, Li X, Ma X, Li A, Wang Y, Reaney MJT. A flaxseed heteropolysaccharide stimulates immune responses and inhibits hepatitis B virus. Int J Biol Macromol. 2019 Sep;136:230-40. doi: 10.1016/j.ijbiomac.2019.06.076, PMID 31201916.

Kasote DM, Zanwar AA, Devkar ST, Hegde MV, Deshmukh KK. Immunomodulatory activity of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed in rat. Asian Pac J Trop Biomed. 2012;2(2):S623-6. doi: 10.1016/S2221-1691(12)60285-8.

Niphade SR, Asad M, Chandrakala GK, Toppo E, Deshmukh P. Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharm Biol. 2009 Dec 2;47(12):1168-73. doi: 10.3109/13880200903019234.

Brochot A, Guilbot A, Haddioui L, Roques C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiology Open. 2017 Aug 14;6(4). doi: 10.1002/mbo3.459, PMID 28296357.

Yakhchali M, Taghipour Z, Mirabzadeh Ardakani M, Alizadeh Vaghasloo M, Vazirian M, Sadrai S. Cinnamon and its possible impact on COVID-19: the viewpoint of traditional and conventional medicine. Biomed Pharmacother. 2021 Nov;143:112221. doi: 10.1016/j.biopha.2021.112221, PMID 34563952.

Gomaa AA, Abdel Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomed Plus. 2021 Aug;1(3):100043. doi: 10.1016/j.phyplu.2021.100043, PMID 35399823.

Tripathi AK, Ray AK, Mishra SK. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. Beni Suef Univ J Basic Appl Sci. 2022 Dec 28;11(1):16. doi: 10.1186/s43088-022-00196-1, PMID 35127957.

Bui TT, Fan Y, Piao CH, Nguyen TV, Shin DU, Jung SY. Piper nigrum extract improves OVA-induced nasal epithelial barrier dysfunction via activating Nrf2/HO-1 signaling. Cell Immunol. 2020 May;351:104035. doi: 10.1016/j.cellimm.2019.104035, PMID 32051090.

Bilginer S, Gozcu S, Guvenalp Z. Molecular docking study of several seconder metabolites from medicinal plants as potential inhibitors of COVID-19 main protease. Turk J Pharm Sci. 2022;19(4):431-41. doi: 10.4274/tjps.galenos.2021.83548, PMID 36047576.

Dharmashekara C, Pradeep S, Prasad SK, Jain AS, Syed A, Prasad KS. Virtual screening of potential phyto-candidates as therapeutic leads against SARS-CoV-2 infection. Environ Chall. 2021 Aug;4:100136. doi: 10.1016/j.envc.2021.100136, PMCID PMC8110638.

Visuvanathan T, Than LTL, Stanslas J, Chew SY, Vellasamy S. Revisiting Trigonella foenum-graecum L.: pharmacology and therapeutic potentialities. Plants (Basel). 2022 May 29;11(11):1450. doi: 10.3390/plants11111450, PMID 35684222.

Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Front Immunol. 2020 May 28;11:1239. doi: 10.3389/fimmu.2020.01239, PMID 32574273.

Gomaa AA, Abdel Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomed Plus. 2021 Aug;1(3):100043. doi: 10.1016/j.phyplu.2021.100043, PMID 35399823.

Li J, Xu D, Wang L, Zhang M, Zhang G, Li E. Glycyrrhizic acid inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules. 2021 Oct 9;26(20):6090. doi: 10.3390/molecules26206090, PMID 34684671, PMCID PMC8539771.

Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 2006 Dec;46(3):167-92. doi: 10.1016/j.yrtph.2006.06.002, PMID 16884839.

Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc. 2022;49:2999-3007. doi: 10.1016/j.matpr.2020.10.055, PMID 33078096.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045-6. doi: 10.1016/s0140-6736(03)13615-x, PMID 12814717.

Published

15-11-2023

How to Cite

DESAI, H., A. MHATRE, R. SINGH, G. LOKHANDE, A. KONDHARE, and S. BUNDAKE. “EXPLORING THE POTENTIAL OF HERBAL THERAPY IN COVID-19”. International Journal of Current Pharmaceutical Research, vol. 15, no. 6, Nov. 2023, pp. 50-60, doi:10.22159/ijcpr.2023v15i6.4003.

Issue

Section

Review Article(s)

Most read articles by the same author(s)