APTAMERS: A NOVEL APPROACH FOR BIO-IMAGING, BIO-SENSING AND TARGETED DRUG DELIVERY SYSTEMS

Authors

  • Nisha Upadhyay pioneer pharmacy college (M.pharm)
  • Maulesh Vyas
  • Atanu Behera
  • Megha Shah
  • Dhananjay Meshram

Abstract

This review describes recent progress made in the aptamer and application of biomedically relevant aptamers and relates them to their future clinical prospects.

Aptamers are single-stranded nucleic acid or amino acid polymers that recognize and bind to targets with high affinity and selectivity. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. Aptamers, simply described as chemical antibodies, are synthetic oligonucleotide ligands or peptides that can be isolated in vitro against diverse targets including toxins, bacterial and viral proteins, virus-infected cells, cancer cells and whole pathogenic microorganisms. They are isolated by the technique called SELEX- systematic evolution of ligands by exponential enrichment. The applications of aptamers range from diagnostics and biosensing, target validation, targeted drug delivery, therapeutics, templates for rational drug design to biochemical screening of small molecule leads compounds, in virology,as novel radio pharmaceuticals.

 

References

(1) D Kiga et al., nRNA Aptamer to the Xanthine/Guanine Base with a Distinctive Mode of Purine Recognition,†Nucleic Acids Research 26 (1998): 1755–1760.

(2) M Sassanfar and JW Szostak, An RNA Motif That Binds ATP,†Nature 364 (1993): 550–553.

(3)Aptamers : The New Frontier In Drug Development? By larry gold,phD. and errol De souza, phD . Drug development and biotechnology health care, April-2007

(4)Deng, Q.; Watson, C.J.; Kennedy, R.T. Aptamer affinity chromatography for rapid assay of

Adenosine in microdialysis samples collected in vivo. J. Chromatogr. A 2003, 1005, 123-130.

(5) Jayasena SD (1999) Clin Chem 45(9):1628–1650

(6) 5 Kiga et al., nRNA Aptamer to the Xanthine/Guanine Base with a Distinctive Mode of Purine Recognition,†Nucleic Acids Research 26 (1998): 1755–1760.

(7) Cox JC, Rudolph P, Ellington AD. Automated RNA selection. Biotechnol Prog

;14:845e50

(8) F, Lurz R, Erdmann VA, et al. Selection of RNA aptamers to the Alzheimer’s

disease amyloid peptide. Biochem Biophys Res Commun 2002;290:1583e8.

(9) . Gilch S, Schatzl HM. Aptamers against prion proteins and prions. Cell Mol Life Sci 2009;66:2445e55.

(10) Neves, M.A.D.; O. Reinstein, M.Saad, P.E. Johnson (2010). "Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study". Biophys Chem153: 9–16. doi:10.1016/j.bpc.2010.09.009. PMID 21035241.

(11). Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., Feigon, J. (1993), Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA, 90, 3745-3749.

(12). Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., Toole, J. J. (1992), Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564-566.

(13) Kyung-Nam Kang, Yoon-Sik Lee, RNA Aptamers: A Review of Recent Trends and Applications. Advances in Biochemical Engineering/Biotechnology Volume 131, 2013, pp 153-169

(14) Long, S.; M. Long, R. White, B. Sullenger (2008). "Crystal structure of an RNA aptamer bound to thrombin". RNA 14 (2): 2504–2512. PMID 18971322

(15) Colas, P., Cohen, B., Jessen, T., Grishina, I., McCoy, J. and Brent, R. (1996) Nature, 380, 548-550.

(16) Geyer, C.R. and Brent, R. (2000) Methods Enzymol., 328, 171-208.

(17). Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands.

Nature 1990, 346, 818–822.

(18) Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics.

Clin. Chem. 1999, 45, 1628–1650.

(19) Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment-RNA ligands to

bacteriophage-t4 DNA-polymerase. Science 1990, 249, 505–510.

(20)Keefe, A.D.; Szostak, J.W. Functional proteins from a random-sequence library. Nature 2001,

, 715–718.

(21)Mann, D.; Reinemann, C.; Stoltenburg, R.; Strehlitz, B. In vitro selection of DNA aptamers

binding ethanolamine. Biochem. Biophys. Res. Commun. 2005, 338, 1928–1934.

(22)Yang, Y.; Yang, D.; Schluesener, H.J.; Zhang, Z. Advances in SELEX and application of

aptamers in the central nervous system. Biomol. Eng. 2007, 24, 583–592.

(23)Tombelli, S.; Minunni, A.; Mascini, A. Analytical applications of aptamers. Biosens. Bioelectron.

, 20, 2424–2434.

(24)Sun, W.; Du, L.; Li, M. Advances and perspectives in cell-specific aptamers. Curr. Pharm. Des.

, 17, 80–91.

(25) Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631.

(26)Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403.

(27)Wang, Y.X.; Ye, Z.Z.; Si, C.Y.; Ying, Y.B. Application of aptamer based biosensors for detection Of pathogenic microorganisms. Chin. J. Anal. Chem. 2012, 40, 634–642.

(28)Feng, H.; Beck, J.; Nassal, M.; Hu, K.H. A SELEX-screened aptamer of human hepatitis B virus RNA encapsulation signal suppresses viral replication. PLoS One 2011, 6, e27862.

(29)Hwang, S.Y.; Sun, H.Y.; Lee, K.H.; Oh, B.H.; Cha, Y.J.; Kim, B.H.; Yoo, J.Y. 5’-Triphosphate- RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acids Res. 2012, 40, 2724–2733.

(30)Hyeon, J.Y.; Chon, J.W.; Choi, I.S.; Park, C.; Kim, D.E.; Seo, K.H. Development of RNA aptamers for detection of Salmonella Enteritidis. J. Microbiol. Methods 2012, 89, 79–82.

(31)Ylera, F.; Lurz, R.; Erdmann, V.A.; Furste, J.P. Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem. Biophys. Res. Commun. 2002, 290, 1583–1588.

(32)Hybarger, G.; Bynum, J.; Williams, R.F.; Valdes, J.J.; Chambers, J.P. A microfluidic SELEX prototype. Anal. Bioanal. Chem. 2006, 384, 191–198.

(33)Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A.E.; Lagally, E.T.; Atzberger, P.; Tarasow, T.M.; Heeger, A.J.; Soh, H.T. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. USA 2009, 106, 2989–2994.

(34)Mosing, R.K.; Bowser, M.T. Microfluidic selection and applications of aptamers. J. Sep. Sci. 2007, 30, 1420–1426.

(35)Park, S.M.; Ahn, J.Y.; Jo, M.; Lee, D.K.; Lis, J.T.; Craighead, H.G.; Kim, S. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 2009, 9,1206–1212.

(36)Qian, J.; Lou, X.; Zhang, Y.; Xiao, Y.; Soh, H.T. Generation of highly specific aptamers via micromagnetic selection. Anal. Chem. 2009, 81, 5490–5495.

(37). Bowser, M.T.; Mendonsa, S.D.; Mosing, R. CE-SELEX: In vitro selection of DNA aptamer using capillary electrophoresis. Abstr. Paper Am. Chem. Soc. 2005, 229, U139.

(38) Tok, J.; Lai, J.; Leung, T.; Li, S.F.Y. Selection of aptamers for signal transduction proteins by capillary electrophoresis. Electrophoresis 2010, 31, 2055–2062.

(39).Mosing, R.K.; Mendonsa, S.D.; Bowser, M.T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 2005, 77, 6107–6112.

(40) Ahn, J.Y.; Jo, M.; Dua, P.; Lee, D.K.; Kim, S. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection. Oligonucleotides 2011, 21, 93–100.

(41). Ahn, J.Y.; Lee, S.; Jo, M.; Kang, J.; Kim, E.; Jeong, O.C.; Laurell, T.; Kim, S. Sol-gel derived nanoporous compositions for entrapping small molecules and their outlook toward aptamer screening. Anal. Chem. 2012, 84, 2647–2653

(42) Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A.E.; Lagally, E.T.; Atzberger, P.; Tarasow, T.M.;Heeger, A.J.; Soh, H.T. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl.Acad. Sci. USA 2009, 106, 2989–2994.

(43) Cho, M.; Xiao, Y.; Nie, J.; Stewart, R.; Csordas, A.T.; Oh, S.S.; Thomson, J.A.; Soh, H.T. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 15373–15378.

(44) Qian, J.; Lou, X.; Zhang, Y.; Xiao, Y.; Soh, H.T. Generation of highly specific aptamers via micromagnetic selection. Anal. Chem. 2009, 81, 5490–5495.

(45) Amy C. Yan. Et al. APTAMERS: PROSPECTS IN THERAPEUTICS AND BIOMEDICINE. Frontiers in Bioscience 10, , May 1, 20051802-1827

(46) Healy, J. M. et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234–2246 (2004).

(47) Amy C. Yan. Et al. APTAMERS: PROSPECTS IN THERAPEUTICS AND BIOMEDICINE. Frontiers in Bioscience 10, 1802-1827, May 1, 2005

(48) Guo, K. T. et al. CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 9, 668–678 (2008).

(49) Healy, J. M. et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234–2246 (2004).

(50) Burmeister, P. E. et al. 2′-Deoxy purine, 2′-O-methylpyrimidine (dRmY) aptamers as candidate therapeutics. Oligonucleotides 16, 337–351 (2006).

(51) Jayasena SD: Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics. Clinical Chemistry 1999, 45:1628-1650.

(52). Ferreira CS, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S: DNA aptamers against the MUC1 tumor marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumors. Analytical and bioanalytical chemistry 2008, 390:1039-50.

(53).Burbulis I, Yamaguchi K, Yu R, Resnekov O, Brent R: Quantifying small numbers of antibodies with a near-universalâ€Â protein-DNA chimera. Nature Methods 2007, 4:1011-3.

(54),McCauley TG, Hamaguchi N, Stanton M: Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical biochemistry 2003, 319:244-50.

(55). Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J, Lu Y: Reversible Cell-Specific Drug Delivery with Aptamer-Functionalized Liposomes. Angew. Chem. Int. Ed. 2009, 48:6494-6498.

(56). De Rosa G, La Rotonda MI: Nano and Microtechnologies for the Delivery of Oligonucleotides with Gene Silencing Properties. Molecules 2009, 14:2801-2823.

(57). Ferreira CSM, Cheung MC, Missailidis S, Bisland S, Gariepy J: Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucl. Acids Res.2009, 37:866-876.

(58). Yan AC, Levy M: Aptamers and aptamer targeted delivery. RNA biology 2009, 6:316-320.

(59), M. et al. OX40-deficient mice are defective in The cellproliferation but are competent Kopf in generatingB cell and CTL Responses after virus infection.Immunity 11, 699–708 (1999).

(60) Barbas AS, White RR. The development and testing of aptamers for cancer. Curr Opin Investig Drugs 2009;10:572e8.

(61) Ylera F, Lurz R, Erdmann VA, et al. Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 2002;290:1583e8.

(62) Gilch S, Schatzl HM. Aptamers against prion proteins and prions. Cell Mol Life Sci 2009;66:2445e55.

(63)Sayer NM, Cubin M, Rhie A, et al. Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 2004;279:13102e9.

(64)Chen F, Zhou J, Luo F, et al. Aptamer from whole-bacterium SELEX as new

therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 2007;357:743e8.

(65)Nishikawa F, Funaji K, Fukuda K, et al. In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides 2004;14:114e29.

(66)Fukuda K, Toyokawa Y, Kikuchi K, et al. Isolation of RNA aptamers specific for the 39 X tail of HCV. Nucleic Acids Symp Ser (Oxf) 2008;52:205e6.

(67)Kikuchi K, Umehara T, Nishikawa F, et al. Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 2009;386:118e23.

(68) Konno K, Fujita S, Iizuka M, et al. Isolation and characterization of RNA Aptamers specific for the HCV minus-IRES domain I. Nucleic Acids Symp Ser (Oxf) 2008;52:493e4

(69)Bock LC, Griffin LC, Latham JA, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992;355:564e6.

(70)Lee WA, Fishback JA, Shaw JP, et al. A novel oligodeoxynucleotide inhibitor of thrombin II. Pharmacokinetics in the cynomolgus monkey. Pharm Res 1995;12:1943e7.

(71)Green LS, Jellinek D, Jenison R, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 1996;35:14413e24.

(72) Cosmi B. ARC-1779, a PEGylated aptamer antagonist of von Willebrand factor for potential use as an anticoagulant or antithrombotic agent. Curr Opin Mol Ther 2009;11:322e8.

(73)Diener J, Daniel Lagasse HA, Duerschmied D, et al. Inhibition of von Willebrand Factor-mediated platelet activation and thrombosis by Anti-von Willebrand Factor A1-domain aptamer ARC1779. J Thromb Haemost 2009;7:1155e62.

(74)Akiyama H, Kachi S, Silva RL, et al. Intraocular injection of an aptamer that binds PDGF-B: a potential treatment for proliferative retinopathies. J Cell Physiol 2006;207:407e12.

(75) Bates PJ, Laber DA, Miller DM, et al. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol

;86:151e64.

(76) Teng Y, Girvan AC, Casson LK, et al. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 2007;67:10491e500.

(77) Blake CM, Sullenger BA, Lawrence DA, et al. Antimetastatic potential of PAI-1-specific RNA aptamers. Oligonucleotides 2009;19:117e28.

(78) Liu Y, Kuan CT, Mi J, et al. Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol Chem 2009;390:137e44.

(79). Sefah K, Tang ZW, Shangguan DH, et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009;23:235e44.

(80) Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem 2009;10:862e8.

(81) Appert A, Nam CH, Lobato N, et al. Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res 2009;69:4784e90.

(82) Ferreira CS, Cheung MC, Missailidis S, et al. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 2009;37:866e76.

(83) Padmanabhan K, Padmanabhan KP, Ferrara JD, et al. The structure of alphathrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 1993;268:17651e4.

(84) Long SB, Long MB, White RR, et al. Crystal structure of an RNA aptamer bound to thrombin. RNA 2008;14:2504e12.

(85) Marisa Joubert, personal communication 2009).

(86). Bardou C, Borie C, Bickle M, et al. Peptide aptamers for small molecule drug discovery. Methods Mol Biol 2009;535:373e88.

(87) Bouquier N, Fromont S, Zeeh JC, et al. Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Chem Biol 2009;16:391e400.

(88) Pultar J, Sauer U, Domnanich P, et al. Aptamer-antibody on-chip sandwich immunoassay for detection of CRP in spiked serum. Biosens Bioelectron 2009;24:1456e61.

(89). Collett JR, Cho EJ, Ellington AD. Production and processing of aptamer microarrays. Methods 2005;37:4e15.

(90). Platt M, Rowe W, Wedge DC, et al. Aptamer evolution for array-based diagnostics. Anal Biochem 2009;390:203e5.

(91). Lao YH, Peck K, Chen LC. Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem 2009;81:1747e54.

(92). Schaefer, R., J. Wiskirchen, K. Guo, B. Neumann, R. Kehlbach, J. Pintaske, V. Voth, T.Walker, A. M. Scheule, T. O. Greiner, U. Hermanutz-Klein, C. D. Claussen, H. Northoff, G. Ziemer and H. P. Wendel (2007). "Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 179(10): 1009-1015.

(93). Sobolewska, B. W., M. Avci-Adali, B. Neumann, T. O. Greiner, A. Stolz, D. Bail, T. Walker, A. Scheule, G. Ziemer and H. P. Wendel (2010). "A novel method for isolation of endothelial progenitor cells for cardiac stem cell therapy. Kardiochirurgia I Torakochirurgia Polska 7(1): 61-65.

(94). Hu, X. and X. Gao (2011). "Multilayer coating of gold nanorods for combined stability and biocompatibility. Physical Chemistry Chemical Physics 13(21): 10028-10035.

(95). Ozalp, V. C., F. Eyidogan and H. A. Oktem (2011). "Aptamer-Gated Nanoparticles for Smart Drug Delivery. Pharmaceuticals 4(8): 1137-1157.

(96)http://www.genelink.com/newsite/products/images/aptamer_structure.jpg

(97) http://www.biochemistry.ucla.edu/biochem/Faculty/Feigon/tba.jpg

(98)http://upload.wikimedia.org/wikipedia/commons/thumb/4/46/Aptamer_biotin.png/220px-Aptamer_biotin.png

(99) http://www.rsc.org/ej/CC/2013/c2cc36348h/c2cc36348h-f3.gif

(100) http://www.leaddiscovery.co.uk/images/aptamer.gif

(101)http://bio349.biota.utoronto.ca/20069/bio349jerry1/images/background_fig2.jpg

(102)http://bio349.biota.utoronto.ca/20069/bio349jerry1/images/aptameradvantage_fig1.jpg

Published

01-07-2013

How to Cite

Upadhyay, N., Vyas, M., Behera, A., Shah, M., & Meshram, D. (2013). APTAMERS: A NOVEL APPROACH FOR BIO-IMAGING, BIO-SENSING AND TARGETED DRUG DELIVERY SYSTEMS. Innovare Journal of Life Sciences, 1(2), 21–27. Retrieved from https://journals.innovareacademics.in/index.php/ijls/article/view/212

Issue

Section

Articles