INFLUENCE OF PEPTIDE P34 ON GENE EXPRESSION OF LISTERIA MONOCYTOGENES AND LISTERIA SEELEGERI

Authors

  • Rodrigo De Almeida Vaucher Post Graduate Program in Biochemistry and Bioprospecting, Center of Chemistry, Pharmaceutical and Food Science, Federal University of Pelotas (UFPel), Pelotas, 96010-900, Rio Grande do Sul, Brazil
  • Janice Luehring Giongo Laboratory of Pharmaceutical Technology, University of High Uruguay Regional Integrated (URI), Santiago, 97700-000, Rio Grande do Sul, Brazil
  • Magton Estivales Laboratory of Microbiological Research, Health Sciences, Franciscan University Center (UNIFRA), Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Virgínia Cielo Rech Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Vivian Shinobu Kishimoto Nishihira Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Cristiane Luchese Post Graduate Program in Biochemistry and Bioprospecting, Center of Chemistry, Pharmaceutical and Food Science, Federal University of Pelotas (UFPel), Pelotas, 96010-900, Rio Grande do Sul, Brazil
  • Ethel Antunes Wilhelm Post Graduate Program in Biochemistry and Bioprospecting, Center of Chemistry, Pharmaceutical and Food Science, Federal University of Pelotas (UFPel), Pelotas, 96010-900, Rio Grande do Sul, Brazil
  • Matheus DellamÉa Baldissera Microbiology and Parasitology Department, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, 97105-900, Rio Grande do Sul, Brazil
  • Leonardo Quintana Soares Lopes Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Roberto Christ Vianna Santos Microbiology and Parasitology Department, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, 97105-900, Rio Grande do Sul, Brazil
  • Adriano Brandelli Laboratory of Biochemistry and Applied Microbiology, Institute of Science and Technology of Food, Federal University of Rio Grande do Sul

DOI:

https://doi.org/10.22159/ijpps.2017v9i1.15391

Keywords:

Bacteriocin, L monocytogenes, L seeligeri, Gene expression

Abstract

Objective: Investigate the influence of the antimicrobial peptides P34 and nisin on the expression of genes associated with components of the cell surface of Listeria monocytogenes and Listeria seeligeri.

Methods: Antimicrobial activity was determined by addition of peptide P34 and nisin (12.5 µg/ml) onto Brain Heart Infusion agar (BHI) plates previously inoculated with indicator strains (L. monocytogenes ATCC 7644 or L. seeligeri AC 82/4) after incubation for 24 h at 37 °C or 240 h at 4 °C. Ribonucleic acid (RNA) was directly extracted from bacterial colonies at the border of the inhibition zones, and the expression levels of genes D-alanine-D-alanyl carrier protein ligase (dltA), putative phospholipid lysinylation (Imo 1695) and EIIABMan of mannose-specific PTS (mptA) were determined using real-time PCR.

Results: A non-significant increase in the levels of transcription of genes dltA, Imo1695 and mptA was observed for L. monocytogenes treated with peptide P34 or nisin. Both peptides caused a similar decrease in dltA gene expression in L. seeligeri. The expression of gene Imo1695 significantly decreased (about 2000-fold) after treatment with the peptide P34 at 37 °C, while at 4 °C a reduction of 12-fold and 5-fold was detected for P34 and nisin, respectively. A significant decrease in mptA gene expression was observed by exposition to peptide P34 (31.872-fold) and nisin (16.047-fold) for 24 h at 37 °C.

Conclusion: The results suggest that both peptide P34 and nisin influence the expression of genes related with the cell-surface/cell-membrane structure of L. seeligeri and in lesser extent L. monocytogenes.

Downloads

Download data is not yet available.

References

Shafia F. Thermocins of Bacillus stearothermophilus. J Bacteriol 1966;92:524-5.

Bradley DE. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 1967;31:230-314.

Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40:722-56.

Favret ME, Yousten AA. Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 1989;53:206-16.

Naclerio G, Ricca E, Sacco M, De Felice M. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl Environ Microbiol 1993;59:4313-16.

Paik HD, Bae SS, Park SH, Pan JG. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. J Ind Microbiol Biotechnol 1997;19:294-8.

Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol 1998;85:42-50.

Oscáriz JC, Lasa I, Pisabarro AG. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 1999;178:337-41.

Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, et al. Thuricin 7:a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett Appl Microbiol 2001;32:243-7.

Bizani D, Brandelli A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J Appl Microbiol 2002;93:512-9.

Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005;56:845-57.

Vaucher RA, Giongo JL, Rech VC, Santos, RCV, Lopes LQS, et al. Antimicrobial peptide P34 influences gene expression of Listeria monocytogenes growing in soft cheese. Int J Pharm Pharm Sci 2016;8:235-9.

Kaur G, Singh T, Malik R. Antibacterial efficacy of nisin, pediocin 34 and enterocin FH99 against Listeria monocytogenes and cross-resistance of its bacteriocin resistant variants to common food preservatives. Braz J Microbiol 2013;44:63-71.

Eijsink VGH, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 1998;64:3275-81.

Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 2002;82:165-85.

De Martinis ECP, Públio MRP, Santarosa PR, Freitas FZ. The antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Braz J Microbiol 2001;32:32–7.

Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for biopreservation and shelf-life extension. Int Dairy J 2006;16:1058-71.

Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000;20:407–31.

Hancock REW, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 2002;206:143–9.

Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs 2003;17:233-40.

Hancock R, Chapple D. Peptide antibiotics. Antimicrobial Agents Chemother 1999;43:1317–23.

Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 1998;64:231-7.

Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999;274:8405-10.

Rodríguez-Lázaro D, Hernández M, Scortti M, Esteve T, Vázquez-Boland JA, Pla M. Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and ampli fluor technology. Appl Environ Microbiol 2004;70:1366-77.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88.

Bouttefroy A, Millière JB. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 2000;62:65-75.

Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 2004;70:1669-79.

Motta AS, Cannavan FS, Tsai SM, Brandelli A. Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch Microbiol 2007;188:367-75.

Motta AS, Lorenzini DM. Brandelli a purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the Amazon Basin. Curr Microbiol 2007;54:282-6.

Motta A, Flores F, Souto A, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 2008;93:275-84.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.

Motta AS, Brandelli A. Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 2002;92:63-70.

Iancu C, Grainger A, Field D, Cotter P, Hill C, Ross R. Comparison of the potency of the lipid II targeting antimicrobials nisin, lacticin 3147 and vancomycin against Gram-positive bacteria. Probiotics Antimicrob Proteins 2012;4:108-15.

Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002;56:117-37.

Rasch M, S Knøchel S. Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett Appl Microbiol 1998;27:275-8.

Schaik, W van, Gahan CG, Hill C. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J Food Protect 1999;62:536-9.

Sant’Anna V, Quadros DAF, Motta AS, Brandelli A. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage. Braz J Microbiol 2013;44:1163-7.

Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, et al. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 2002;148:2361-9.

Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993;57:543-94.

Vadyvaloo V, Arous S, Gravesen A, Hechard Y, Chauhan-Haubrock R, Hastings JW, et al. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 2004;150:3025-33.

Gravesen A, Warthoe P, Knochel S, Thirstrup K. Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiology 2000;146:1381-9.

Ramnath M, Beukes M, Tamura K, Hastings J. Absence of a putative in a leucocin A resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Appl Environ Microbiol 2000;66:3098-101.

Dalet K, Cenatiempo Y, Cossart P, Héchard Y. A sigma-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 2001;147:3263-9.

Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interaction. Nat Rev Microbiol 2008;6:276-87.

Jack R, Tagg J, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59:171-200.

Maisnier-Patin S, Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grow in the presence of high nisin concentrations. Microbiol Rev 1996;140:29-35.

Vadyvaloo V, Hastings J, Van der Merwe M, Rautenbach MJ. Membranes of class IIa bacteriocin-resistant L. monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 2002;68:5223-30.

Published

01-01-2017

How to Cite

Vaucher, R. D. A., J. L. Giongo, M. Estivales, V. C. Rech, V. S. K. Nishihira, C. Luchese, E. A. Wilhelm, M. D. Baldissera, L. Q. S. Lopes, R. C. V. Santos, and A. Brandelli. “INFLUENCE OF PEPTIDE P34 ON GENE EXPRESSION OF LISTERIA MONOCYTOGENES AND LISTERIA SEELEGERI”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 1, Jan. 2017, pp. 116-20, doi:10.22159/ijpps.2017v9i1.15391.

Issue

Section

Original Article(s)

Most read articles by the same author(s)