INFLUENCE OF PEPTIDE P34 ON GENE EXPRESSION OF LISTERIA MONOCYTOGENES AND LISTERIA SEELEGERI
DOI:
https://doi.org/10.22159/ijpps.2017v9i1.15391Keywords:
Bacteriocin, L monocytogenes, L seeligeri, Gene expressionAbstract
Objective: Investigate the influence of the antimicrobial peptides P34 and nisin on the expression of genes associated with components of the cell surface of Listeria monocytogenes and Listeria seeligeri.
Methods: Antimicrobial activity was determined by addition of peptide P34 and nisin (12.5 µg/ml) onto Brain Heart Infusion agar (BHI) plates previously inoculated with indicator strains (L. monocytogenes ATCC 7644 or L. seeligeri AC 82/4) after incubation for 24 h at 37 °C or 240 h at 4 °C. Ribonucleic acid (RNA) was directly extracted from bacterial colonies at the border of the inhibition zones, and the expression levels of genes D-alanine-D-alanyl carrier protein ligase (dltA), putative phospholipid lysinylation (Imo 1695) and EIIABMan of mannose-specific PTS (mptA) were determined using real-time PCR.
Results: A non-significant increase in the levels of transcription of genes dltA, Imo1695 and mptA was observed for L. monocytogenes treated with peptide P34 or nisin. Both peptides caused a similar decrease in dltA gene expression in L. seeligeri. The expression of gene Imo1695 significantly decreased (about 2000-fold) after treatment with the peptide P34 at 37 °C, while at 4 °C a reduction of 12-fold and 5-fold was detected for P34 and nisin, respectively. A significant decrease in mptA gene expression was observed by exposition to peptide P34 (31.872-fold) and nisin (16.047-fold) for 24 h at 37 °C.
Conclusion: The results suggest that both peptide P34 and nisin influence the expression of genes related with the cell-surface/cell-membrane structure of L. seeligeri and in lesser extent L. monocytogenes.
Downloads
References
Shafia F. Thermocins of Bacillus stearothermophilus. J Bacteriol 1966;92:524-5.
Bradley DE. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 1967;31:230-314.
Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40:722-56.
Favret ME, Yousten AA. Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 1989;53:206-16.
Naclerio G, Ricca E, Sacco M, De Felice M. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl Environ Microbiol 1993;59:4313-16.
Paik HD, Bae SS, Park SH, Pan JG. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. J Ind Microbiol Biotechnol 1997;19:294-8.
Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol 1998;85:42-50.
Oscáriz JC, Lasa I, Pisabarro AG. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett 1999;178:337-41.
Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hassen A, et al. Thuricin 7:a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett Appl Microbiol 2001;32:243-7.
Bizani D, Brandelli A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J Appl Microbiol 2002;93:512-9.
Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 2005;56:845-57.
Vaucher RA, Giongo JL, Rech VC, Santos, RCV, Lopes LQS, et al. Antimicrobial peptide P34 influences gene expression of Listeria monocytogenes growing in soft cheese. Int J Pharm Pharm Sci 2016;8:235-9.
Kaur G, Singh T, Malik R. Antibacterial efficacy of nisin, pediocin 34 and enterocin FH99 against Listeria monocytogenes and cross-resistance of its bacteriocin resistant variants to common food preservatives. Braz J Microbiol 2013;44:63-71.
Eijsink VGH, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 1998;64:3275-81.
Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 2002;82:165-85.
De Martinis ECP, Públio MRP, Santarosa PR, Freitas FZ. The antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Braz J Microbiol 2001;32:32–7.
Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for biopreservation and shelf-life extension. Int Dairy J 2006;16:1058-71.
Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000;20:407–31.
Hancock REW, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 2002;206:143–9.
Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs 2003;17:233-40.
Hancock R, Chapple D. Peptide antibiotics. Antimicrobial Agents Chemother 1999;43:1317–23.
Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 1998;64:231-7.
Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999;274:8405-10.
RodrÃguez-Lázaro D, Hernández M, Scortti M, Esteve T, Vázquez-Boland JA, Pla M. Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and ampli fluor technology. Appl Environ Microbiol 2004;70:1366-77.
Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88.
Bouttefroy A, Millière JB. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 2000;62:65-75.
Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 2004;70:1669-79.
Motta AS, Cannavan FS, Tsai SM, Brandelli A. Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch Microbiol 2007;188:367-75.
Motta AS, Lorenzini DM. Brandelli a purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the Amazon Basin. Curr Microbiol 2007;54:282-6.
Motta A, Flores F, Souto A, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 2008;93:275-84.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.
Motta AS, Brandelli A. Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 2002;92:63-70.
Iancu C, Grainger A, Field D, Cotter P, Hill C, Ross R. Comparison of the potency of the lipid II targeting antimicrobials nisin, lacticin 3147 and vancomycin against Gram-positive bacteria. Probiotics Antimicrob Proteins 2012;4:108-15.
Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002;56:117-37.
Rasch M, S Knøchel S. Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett Appl Microbiol 1998;27:275-8.
Schaik, W van, Gahan CG, Hill C. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J Food Protect 1999;62:536-9.
Sant’Anna V, Quadros DAF, Motta AS, Brandelli A. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage. Braz J Microbiol 2013;44:1163-7.
Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, et al. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 2002;148:2361-9.
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993;57:543-94.
Vadyvaloo V, Arous S, Gravesen A, Hechard Y, Chauhan-Haubrock R, Hastings JW, et al. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 2004;150:3025-33.
Gravesen A, Warthoe P, Knochel S, Thirstrup K. Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiology 2000;146:1381-9.
Ramnath M, Beukes M, Tamura K, Hastings J. Absence of a putative in a leucocin A resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Appl Environ Microbiol 2000;66:3098-101.
Dalet K, Cenatiempo Y, Cossart P, Héchard Y. A sigma-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 2001;147:3263-9.
Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interaction. Nat Rev Microbiol 2008;6:276-87.
Jack R, Tagg J, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59:171-200.
Maisnier-Patin S, Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grow in the presence of high nisin concentrations. Microbiol Rev 1996;140:29-35.
Vadyvaloo V, Hastings J, Van der Merwe M, Rautenbach MJ. Membranes of class IIa bacteriocin-resistant L. monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 2002;68:5223-30.