ROLE OF NORMAL PERFUSION TIME ON FUNCTIONAL ENZYME ACTIVITIES AND PHYSIOLOGY OF INTERFIBRILLAR AND SUB-SARCOLEMMAL MITOCHONDRIA FROM ISOLATED RAT HEART

Authors

  • Gino A. Kurian Senior Assistant Professor, Vascular Biology Lab, School of Chemical and Biotechnology SASTRA University Thanjavur, India

Keywords:

Myocardial ischemia reperfusion injury, Interfibrillar mitochondria, Sub-sarcolemmal mitochondria, Electron transport chain enzyme, Langendorff apparatus

Abstract

Objective: Obvious lack of interfibrillar mitochondria (IFM) subpopulation in isolated mitochondria attributed to limitations in the isolation procedure. In this manuscript, we compared the functional activities of mitochondrial sub-populations namely, IFM and sub-sarcolemmal (SSM) mitochondria.

Methods: IFM and SSM were obtained from isolated rat heart subjected to different perfusion time namely (minutes) 0.5,5,10,25,60 and 120 through Langendroff perfusion system.

Results: Prolonged perfusion of isolated rat heart reduced oxidative phosphorylation capacity in both IFM and SSM, but were distinct among the sub-populations. However, mRNA expression level of ND4, CYT B and ATP 6 and resazurin activity was similar in both IFM and SSM.

Conclusion: Even though overall function of myocardium is unchanged, mitochondrial sub- populations were distinct in electron transport chain activities, emphasizes the requirement to assess mitochondrial function as distinct subpopulation rather than whole entity.

 

Downloads

Download data is not yet available.

References

Curtis MJ. Characterization, utilization and clinical relevance of isolated perfused heart models of ischaemia-induced ventricular fibrillation. Cardiovasc Res 1998;39:194-215.

Kurian GA, Berenshtein E, Kakhlon O, Chevion M. Energy status determines the distinct biochemical and physiological behavior of interfibrillar and sub-sarcolemmal mitochondria. Biochem Biophys Res Commun 2012;428:376-82.

Skrzypiec-Spring MB, Grotthus A, Szelag, Schulz R. Isolated heart perfusion according to Langendorff-still viable in the new millennium. J Pharmacol Toxicol Methods 2007;55:113-26.

O'Donnell JM, Lewandowski ED. Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther 2005;12:958-64.

Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem 2012;30:83-94.

De Leiris JD, Harding P, Pestre S. The isolated perfused rat heart: a model for studying myocardial hypoxia or ischaemia. Basic Res Cardiol 1984;79:313-21.

Ambrosio GJ, Flaherty T, DuilioI Tritto C, Santoro G, Elia PP, Condorelli M, et al. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest 1991;87:2056-66.

Ambrosio GB, Villari, Chiariello M. Calcium antagonists and experimental myocardial ischemia reperfusion injury. J Cardiovasc Pharmacol 1992;20 Suppl 7:S26-9.

Chevion MY, Jiang R, Har-El, Berenshtein E, Uretzky G, Kitrossky N. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci USA 1993;90:1102-6.

Palmer J, Tandler WB, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 1977;252:8731-9.

Tanaka-Esposito CQ, Chen, Lesnefsky EJ. Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res 2012;160(3):207-16.

Chen QC, Hoppel L, Lesnefsky EJ. Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J Pharmacol Exp Ther 2006;316:200-7.

Scaduto RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 1999;76:469-77.

Savli HS, Sirma B, Nagy M, Aktan G, Dincol Z, Salcioglu N, et al. Real-Time PCR analysis of af4 and dek genes expression in acute promyelocytic leukemia t (15;17) patients. Exp Mol Med 2004;36:279-82.

McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244:6049-55.

Emaus R, Grunwald KR, Lemasters JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 1986;850:436-48.

Weinberg J, Venkatachalam A, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 2000;97:2826-31.

Ohnishi TV, Sled D, Rudnitzky NI, Meinhardt SW, Yagi T, Hatefi Y, et al. Topographical distribution of redox centres and the Qo site in ubiquinol-cytochrome-c oxidoreductase (complex III) and ligand structure of the Rieske iron-sulphur cluster. Biochem Soc Trans 1994;22:191-7.

Zhang HX, Du GH, Zhang JT. Assay of mitochondrial functions by resazurin In vitro. Acta Pharmacol Sin 2004;25:385-9.

Crandall DL, Goldstein BM, Ferraro GD, Cervoni P. Relationship of cardiac hemodynamic and biochemical adaptations to mortality during long-term aortic constriction. Proc Soc Exp Biol Med 1991;198:747-53.

Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 1999;372:399-407.

Suh JH, Heath SH, Hagen TM. Two subpopulations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radic Biol Med 2003;35:1064-72.

Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res 2010;88:40-50.

Lesnefsky EJ, Slabe TJ, Stoll MS, Minkler PE, Hoppel CL. Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 2001;280:H2770-8.

Aaronson SA, Stephenson JR. Endogenous type-C RNA viruses of mammalian cells. Biochim Biophys Acta 1976;458:323-54.

Lesnefsky E, Chen JQ, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 2004;279:47961-7.

Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Siddiqui SA, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 2008;129:304-12.

Hoppel CJ, Kerner P, Turkaly P, Minkler, Tandler. Isolation of hepatic mitochondrial contact sites: previously unrecognized inner membrane components. Anal Biochem 2002;302:60-9.

Echtay KS, Murphy MP, Smith RA, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 2002;277:47129-35.

Published

01-11-2014

How to Cite

Kurian, G. A. “ROLE OF NORMAL PERFUSION TIME ON FUNCTIONAL ENZYME ACTIVITIES AND PHYSIOLOGY OF INTERFIBRILLAR AND SUB-SARCOLEMMAL MITOCHONDRIA FROM ISOLATED RAT HEART”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 11, Nov. 2014, pp. 77-83, https://journals.innovareacademics.in/index.php/ijpps/article/view/2828.

Issue

Section

Original Article(s)