• Gino A Kurian Vascular Biology Lab, School of Chemical & Biotechnology, SASTRA University


Renal ischemia reperfusion injury, Sodium thiosulfate, Hydrogen sulfide, DL-Propargyl glycine, Cell viability tests


Objectives: Hydrogen sulphide (H2S) has a protective effect against renal ischemia reperfusion injury (I/R), but it is toxic and have the limitation for its controlled in-vivo release to the system. However, its metabolite thiosulfate can release low amounts of H2S, is non toxic and clinically approved drug for end renal failure, cyanide toxicity and calcific nephrolithiasis, and may possess anti-ischemic reperfusion effect. The objective of this study was to determine the anti ischemia reperfusion (I/R) effect of sodium thiosulfate (STS).

Methods: I/R was induced in LLC PK1 renal tubular epithelial cells by reversibly treatment of cells with glucose oxidase (3 mM/s) and catalase (998/s) in a glucose deprived media. STS was administered to the cells as pre-treated, preconditioned or post conditioned drug.

Results: Pre-treatment of LLC PK1 cells with STS protects the cells from I/R injury but not, when the cells were preconditioned or post conditioned with STS, examined through cell viability tests like sulforhodamine B, crystal violet and LDH activity. Propargylglycine the endogenous H2S biosynthetic inhibitor treatment to the cells did not negate the renal protection mediated by STS pre-treatment indicate the possible release of H2S.

Conclusion: This study indicates that STS plays a protective role in I/R induced renal injury when they were administered as pre-treated drug by modulating H2S metabolism.



Download data is not yet available.

Author Biography

Gino A Kurian, Vascular Biology Lab, School of Chemical & Biotechnology, SASTRA University

Senior Assistant Professor

School of Chemcial & Biotechnology

SASTRA University


Kurian GA, Berenshtein E, Kakhlon O, Chevion M. Energy status determines the distinct biochemical and physiological behavior of interfibrillar and sub-sarcolemmal mitochondria. Biochem Biophys Res Commun 2012;428(3):376-82.

Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem 2012;30(1):83-94.

Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: A comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007;376(1-2):1-43.

Bohmova R, Viklicky O. Renal ischemia-reperfusion injury: An inescapable event affecting kidney transplantation outcome. Folia Microbiol (Praha) 2001;46(4):267-76.

Boratynska M, Kaminska D, Mazanowska O. Pathophysiology of ischemia-reperfusion injury in renal transplantation. Postepy Hig Med Dosw 2004;58:1-8.

Rodriguez F, Bonacasa B, Fenoy FJ, Salom MG. Reactive oxygen and nitrogen species in the renal ischemia/reperfusion injury. Curr Pharm Des 2012;19(15):2776-94.

Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 2003;14(8):2199-210.

Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 2012;17(1):141-85.

Predmore BL, Lefer DJ, Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 2012;17(1):119-40.

Lee HT, Emala CW. Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury. J Am Soc Nephrol 2002;13(11):2753-61.

Shymans'ka TV, Hoshovs'ka Iu V, Semenikhina OM, Sahach VF. Effect of hydrogen sulfide on isolated rat heart reaction under volume load and ischemia-reperfusion. Fiziol Zh 2012;58(6):57-66.

Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S, et al. Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating nrf2 signaling in an erk-dependent manner. Am J Physiol Heart Circ Physiol 2013;304(9):H1215-24.

Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL OK. Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 2009;297(1):F27-35.

Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 2011;51:169-87.

Hayden MR, Tyagi SC, Kolb L, Sowers JR, Khanna R. Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: The emerging role of sodium thiosulfate. Cardiovasc Diabetol 2005;4(1):4.

Baskin SI, Horowitz AM, Nealley EW. The antidotal action of sodium nitrite and sodium thiosulfate against cyanide poisoning. J Clin Pharmacol 1992;32(4):368-75.

Sen U, Vacek TP, Hughes WM, Kumar M, Moshal KS, Tyagi N, et al. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous h2s generation. Pharmacol 2008;82(3):201-13.

Mueller S, Millonig G, Waite GN. The gox/cat system: A novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Adv Med Sci 2009;54(2):121-35.

Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 1996;19(11):1518-20.

Vichai V, Kirtikara K. Sulforhodamine b colorimetric assay for cytotoxicity screening. Nat Protoc 2006;1(3):1112-6.

Parhamifar L, Andersen H, Moghimi SM. Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol Biol 2013;948:13-22.

Strutyns'ka NA, Semenykhina OM, Chorna SV, Vavilova HL, Sahach VF. Hydrogen sulfide inhibits ca(2+)-induced mitochondrial permeability transition pore opening in adult and old rat heart]. Fiziol Zhivotn 2011;57(6):3-14.

Solaini G, Harris DA. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 2005;390(Pt 2):377-94.

Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 2008;275(13):3352-61.

Marutani E, Kosugi S, Tokuda K, Khatri A, Nguyen R, Atochin DN, et al. A novel hydrogen sulfide-releasing n-methyl-d-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem 2012;287(38):32124-35.

Bos EM, Leuvenink HG, Snijder PM, Kloosterhuis NJ, Hillebrands JL, Leemans JC, et al. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol 2009;20(9):1901-5.

Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: Role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 2008;295(2):H801-806.

Bang SW, Clark DS, Keasling JD. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from salmonella enterica serovar typhimurium in escherichia coli. Appl Environ Microbiol 2000;66(9):3939-44.

Mel'nyk AV, Pentiuk OO. Activity of hydrogen sulfide production enzymes in kidneys of rats. Ukr Biokhim Zhivotn 2009;81(4):12-22.

Olson KR. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. J Comp Physiol B 2012;182(7):881-97.



How to Cite

Kurian, G. A. “ANTI ISCHEMIA REPERFUSION EFFECT OF SODIUM THIOSULFATE IN LLC PK1 CELLS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 3, Mar. 2015, pp. 390-6,



Original Article(s)

Most read articles by the same author(s)