PREDICTION OF FUNCTIONAL, STRUCTURAL AND STABILITY CHANGES IN PMM2 GENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL ANALYSIS

Authors

  • JINAL M. THAKOR Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, Vallabh Vidyanagar, 388121, Anand, Gujarat, India
  • KINNARI N. MISTRY Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, Vallabh Vidyanagar, 388121, Anand, Gujarat, India
  • SISHIR GANG Muljibhai Patel Urological Hospital, Dr. V. V. Desai Road, Nadiad, 387001, Gujarat, India
  • DHARAMSHIBHAI N. RANK Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388110, Gujarat, India
  • CHAITANYA G. JOSHI Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388110, Gujarat, India

DOI:

https://doi.org/10.22159/ijpps.2021v13i7.41802

Keywords:

nsSNP, PMM2, Nephrotic syndrome, Insilico analysis

Abstract

Objective: Nephrotic syndrome defines as a disorder with a group of symptoms like proteinuria, hypoalbuminemia, hyperlipidemia, and edema. PMM2 encodes phosphomannosemutase protein enzyme involved in the synthesis of N-glycan.
Methods: Different Insilico analysis tools: SIFT, PolyPhen, PROVEAN, SNPandGO, MetaSNP, PhDSNP, MutPred, I-Mutant, STRUM, PROCHECK-Ramachandran, COACH and ConSurf, were used to check the effect of nsSNP on protein structure and function.
Results: The genetic polymorphism in the PMM2 gene was retrieved from NCBI ClinVar and UniProtKB. Total 20 SNPs were predicted most significant and responsible for disease-causing and decrease protein stability.
Conclusion: This study helps to discover disease-causing deleterious SNPs with different computational tools and gives information about potent SNPs.

Downloads

Download data is not yet available.

References

Anigilaje EA, Olutola A. Prospects of genetic testing for steroid-resistant nephrotic syndrome in Nigerian children: a narrative review of challenges and opportunities. Int J Nephrol Renovasc Dis 2019;12:119-6.

Verma N. Introduction to hyperlipidemia and its treatment: a review. IJCPR 2016;9:6-14.

Chaudhari CS, Gadgil NM, Kumavat PV, Kshirsagar GR, Dhamne S. Clinicopathological study of nephrotic syndrome in Indian children: a tertiary care experience. Annals Pathol Laboratory Med 2017;4:A28-8.

Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatric Nephrol 2010;25:1621-32.

Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatric Nephrol 2020;35:927-36.

Aebi M. N-linked protein glycosylation in the ER. BBA-Mol Cell Res 2013;1833:2430-7.

Jaeken J, Artigas J, Barone R, Fiumara A, De Koning TJ, de Rijk-van Andel JF, et al. Phosphomannomutase deficiency is the main cause of carbohydrate-deficient glycoprotein syndrome with type I isoelectrofocusing pattern of serum transferrins. J Inher Metab Dis 1997;20:447-9.

Hofherr A, Wagner C, Fedeles S, Somlo S, Köttgen M. N-glycosylation determines the abundance of the transient receptor potential channel TRPP2. JBC 2014;289:14854-67.

Feero WG, Guttmacher AE, Collins FS. Genomic medicine-an updated primer. N Engl J Med 2010;362:2001-11.

Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 2007;9:289-20.

Arshad M, Bhatti A, John P. Identification and in silico analysis of functional SNPs of human TAGAP protein: a comprehensive study. PloS One 2018;13:1-13.

Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, Yang SP, et al. A catalog of neutral and deleterious polymorphism in yeast. PLoS Genetics 2008;4:1-15.

International HapMap Consortium. A haplotype map of the human genome. Nature 2005;437:1299-20.

Tilton F, RKM JV, LPK. In silico interaction analysis of herbal bioactive molecules with penicillin-binding protein in staphylococcus aureus. Asian J Pharm Clin Res 2016;9:44-7.

Lohitesh K, Alok KB, Ramanathan K, Shanthi V. In silico investigation of missense mutations in succinate dehydrogenase complex 5 gene using different genomic algorithms. Asian J Pharm Clin Res 2015;8:189-92.

Kaur T, Thakur K, Singh J, Kamboj SS, Kaur M. Identification of functional SNPs in human LGALS3 gene by in silico analyses. EJMHG 2017;18:321-8.

Dakal TC, Kala D, Dhiman G, Yadav V, Krokhotin A, Dokholyan NV. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Sci Reports 2017;7:1-18.

Abdelraheem NE, Osman LO, Abedlrhman SA, Ali AS, Elsadig AH, El_Tayeb GM, et al. A comprehensive in silico analysis of the functional and structural impact of non-synonymous single nucleotide polymorphisms in the human KRAS gene. Am J Bioinf Res 2016;6:32-55.

Leong IU, Stuckey A, Lai D, Skinner JR, Love DR. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two meta servers to classify long QT syndrome gene mutations. BMC Med Genetics 2015;16:1-13.

Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006;22:2729-34.

Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009;25:2744-50.

Satti AA, Abdelmageed MI, Murshed NS, Elfadol NM, Mustafa MI, Makhawi A. M. In silico analysis of B3GALTL gene reveling 13 novel mutations associated with peters'-plus syndrome. BioRxiv 2020;1:1-20.

Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics 2016;32:2936-46.

Matur M, Sharma P, Khan FS, Pednekar M. Insilico studies on taste receptor gene (TAS2R38) and TAS2R38 protein interaction with ligands PTC and PROP using docking approach. IJARIIT 2017;3:205-9.

Rincy VC, Namitha KN, Aswathy J, Binuja SS. An in silico study of novel morpholine derivatives for lung cancer, non-hodgkin's lymphoma and metastasis melanoma. JPSR 2019;11:2479-84.

Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 2013;29:2588-95.

Kuure S, Vuolteenaho R, Vainio S. Kidney morphogenesis: cellular and molecular regulation. Mechanisms Dev 2000;92:31-45.

Hardison RC, Chui DH, Giardine B, Riemer C, Patrinos GP, Anagnou N, et al. HbVar: a relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Human Mutation 2002;19:225-33.

Casado M, O’Callaghan MM, Montero R, Perez Cerda C, Perez B, Briones P, et al. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia). Cerebellum 2012;11:557-63.

Grünert SC, Marquardt T, Lausch E, Fuchs H, Thiel C, Sutter M, et al. Unsuccessful intravenous D-mannose treatment in PMM2-CDG. OJRD 2019;14:1-6.

Asteggiano CG, Papazoglu M, Millon MBB, Peralta MF, Azar NB, Specola NS, et al. Ten years of screening for congenital disorders of glycosylation in Argentina: case studies and pitfalls. Pediatric Res 2018;84:837-41.

Thirumal Kumar D, Jain N, Udhaya Kumar S, George Priya Doss C, Zayed H. Identification of potential inhibitors against pathogenic missense mutations of PMM2 using a structure-based virtual screening approach. JBSD 2020;39:1-17.

Vega AI, Perez Cerda C, Abia D, Gamez A, Briones P, Artuch R, et al. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG). JIMD 2011; 34:929-39.

Yuste Checa P, Gamez A, Brasil S, Desviat LR, Ugarte M, Perez Cerda C, et al. The effects of PMM2‐CDG‐causing mutations on the folding, activity, and stability of the PMM2 protein. Human Mutation 2015;36:851-60.

Cabezas OR, Flanagan SE, Stanescu H, Garcia Martinez E, Caswell R, Lango Allen H, et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. JASN 2017;28:2529-39.

Published

01-07-2021

How to Cite

THAKOR, J. M., K. N. MISTRY, S. GANG, D. N. RANK, and C. G. JOSHI. “PREDICTION OF FUNCTIONAL, STRUCTURAL AND STABILITY CHANGES IN PMM2 GENE ASSOCIATED WITH NEPHROTIC SYNDROME USING COMPUTATIONAL ANALYSIS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 7, July 2021, pp. 87-93, doi:10.22159/ijpps.2021v13i7.41802.

Issue

Section

Original Article(s)