PRELIMINARY EVALUATION OF AN ANTHRAQUINONE CONJUGATED DOTA DERIVATIVE AS SPECT AGENT

Authors

  • Anupriya Adhikari Institute of Nuclear Medicine and Allied Sciences, DRDO, Brigd. S K Mazumdar Road, Timarpur, Delhi-110054, INDIA Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar-249404, Uttarakhand
  • Anupama Datta Institute of Nuclear Medicine and Allied Sciences, DRDO, Brigd. S K Mazumdar Road, Timarpur, Delhi-110054, INDIA
  • Krishna Chuttani Institute of Nuclear Medicine and Allied Sciences, DRDO, Brigd. S K Mazumdar Road, Timarpur, Delhi-110054, INDIA
  • Harish Rawat Institute of Nuclear Medicine and Allied Sciences, DRDO, Brigd. S K Mazumdar Road, Timarpur, Delhi-110054, INDIA
  • Abha Shukla Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar-249404, Uttarakhand
  • Anil K. Mishra Institute of Nuclear Medicine and Allied Sciences, DRDO, Brigd. S K Mazumdar Road, Timarpur, Delhi-110054, INDIA

Keywords:

Anthraquinone, Tumor, Single Photon Emission Computed Tomography

Abstract

Objective: An anthraquinone derivative, DO3A-Act-AQ having DO3A (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-trisacetic acid) scaffold is radio labeled with 99mTc radioisotope and evaluated as a SPECT imaging agent for tumor.

Methods: Preliminary in-vivo evaluation of 99mTc-DO3A-Act-AQ radioconjugate including blood kinetics, biodistribution and gamma scintigraphic imaging is performed on BMG-1 tumor xenografted mice after successful optimization of the radiolabeling condition.

Results: The radiotracer, 99mTc-DO3A-Act-AQ was produced in high radiochemical yield of>96% and specific activity of 3.62 MBq/nmol at pH 7.5 and 150 µg stannous chloride. Radioconjugate displayed excellent in-vitro and in-vivo stability with only ~2% transchelation of radiometal at 24 h p. i and rapid blood clearance from the system with t1/2(F) = 38.04±0.35 min and t1/2(S) = 5 h 30 min±0.67. Significant tumor-to-muscle ratio of>7 at 2 h p. i. in biodistribution and SPECT imaging studies in BMG-1 tumor xenografted mice suggested the tumor specificity of the radioconjugate.

Conclusion: Stable radiocomplex formation of 99mTc-DO3A-Act-AQ and its significant tumor specificity demonstrated its future application as a promising SPECT radioligand for tumor imaging.

Downloads

Download data is not yet available.

Author Biography

Abha Shukla, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar-249404, Uttarakhand

Department of Chemistry

References

Denny WA. DNA-intercalating ligands as anti-cancer drugs: Prospects for future design. Anticancer Drug Des 1989;4:241‒63.

Zagotto G, Sissi C, Gatto B, Palumbo M. Aminoacyl-analogues of mitoxantrone as novel DNA-damaging cytotoxic agents. Arkivoc 2004;5:204‒18.

Skladanowski A, Konopa J. Mitoxantrone and ametantrone induce interstrand cross-links in DNA of tumour cells. Br J Cancer 2000;82:1300–4.

Tu HY, Huang AM, Teng CH, Hour TC, Yang SC, Pu YS, et al. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells. Bioorg Med Chem 2011;19:5670–8.

Jackson TC, Verrier JD, Kochanek PM. Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis 2013;4:1‒24.

Zee-Cheng RK, Cheng CC. Antineoplastic agents. Structure activity relationship study of bis (substituted aminoalkyamino)-anthraquinones. J Med Chem 1978;21:291‒4.

Huang HS, Chiu HF, Lee AR, Guo CL, Yuan CL. Synthesis and structure-activity correlations of the cytotoxic bifunctional 1, 4-diamidoanthraquinone derivatives. Bioorg Med Chem 2004;12:6163‒70.

Murdock KC, Child RG, Fabio PF, Angier RB, Wallace RE, Durr FE, Citarella RV. Antitumor agents. 1, 4-bis-((aminoalkyl)amino)-9, 10-anthracenediones. J Med Chem 1979;22:1024‒30.

Johnson MG, Kiyokawa H, Tani S, Koyama J, Morris-Natschke SL, Mauger A, et al. Antitumor Agents CLXVII. Synthesis and structure-activity correlations of the cytotoxic anthraquinone 1, 4-Bis-(2, 3-Epoxypropylamino)-9, 10-anthracenedione and of related compounds. Bioorg Med Chem 1997;5:1469‒79.

Gatto B, Zagotto G, Sissi C, Cera C, Uriarte E, Palu G, et al. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling, and biological activity. J Med Chem 1996;39:3114–22.

Huang HS, Huang KF, Li CL, Huang YY, Chiang YH, Huang FC, et al. Synthesis, human telomerase inhibition and anti-proliferative studies of a series of 2, 7-bis-substituted amido-anthraquinone derivatives. Bioorg Med Chem 2008;16:6976–86.

Hua DH, Lou K, Battina SK, Zhao H, Perchellet EM, Wang Y, et al. Syntheses, Molecular targets and antitumor activities of novel triptycene bisquinones and 1, 4-anthracenedione analogs. Curr Med Chem 2006;6:303‒18.

Kamal A, Ramu R, Tekumalla V, Khanna GB, Barkume MS, Juvekar AS, et al. Synthesis, DNA binding, and cytotoxicity studies of pyrrolo [2, 1-c] [1, 4]benzodiazepine-anthraquinone conjugates. Bioorg Med Chem 2007;15:6868–75.

Routier S, Cotelle N, Catteau JP, Bernier JL, Waring MJ, Riou JF, et al. Salen-Anthraquinone conjugates. Synthesis, DNA-Binding and cleaving properties, effects on topoisomerases and cytotoxicity. Bioorg Med Chem 1996;4:1185‒96.

Hsin LW, Wang HP, Kao PH, Lee O, Chen WR, Chen HW, et al. Synthesis, DNA binding, and cytotoxicity of 1, 4-bis(2-amino-ethylamino)anthraquinone–amino acid conjugates. Bioorg Med Chem 2008;16:1006–14.

Teng CH, Won SJ, Lin CN. Design, synthesis and cytotoxic effect of hydroxy-and 3-alkylaminopropoxy-9, 10-anthraquinone derivatives. Bioorg Med Chem 2005;13:3439–45.

Wu M, Wang B, Perchellet EM, Sperfslage BJ, Stephany HA, Hua DH, et al. Synthetic 1, 4-anthracenediones, which block nucleoside transport and induce DNA fragmentation, retain their cytotoxic efficacy in daunorubicin-resistant HL-60 cell lines. Anti-Cancer Drugs 2001;12:807‒19.

Teng CH, Won SJ, Lin CN. Design synthesis and cytotoxic effect of hydroxyl-and 3-alkylaminopropoxy-9, 10-anthraquinone derivatives. Bioorg Med Chem 2005;13:3439–45.

Hurley LH, Wheelhouse RT, Sun D, Kerwin SM, Salazar M, Fedoroff OY, et al. G-quadruplexes as targets for drug design. Pharmacol Therapeut 2000;85:141–58.

Zagotto G, Sissi C, Moro S, Dal Ben D, Parkinson GN, Fox KR, et al. Amide bond direction modulates G-quadruplex recognition and telomerase inhibition by 2, 6 and 2, 7 bis-substituted anthracenedione derivatives. Bioorg Med Chem 2008;16:354–61.

Cairns D, Michalitsi E, Jenkins TC, Mackay SP. Molecular modelling and cytotoxicity of substituted anthraquinones as inhibitors of human telomerase. Bioorg Med Chem 2002;10:803–7.

Wang Y, Perchellet EM, Ward MM, Lou K, Hua DH, Perchellet JP. Rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria treated with anti-tumor 1, 4-anthracenediones. Anti-Cancer Drugs 2005;16:953‒67.

Perchellet EM, Wang Y, Weber RL, Sperfslage BJ, Lou K, Crossland J, et al. Synthetic 1, 4-anthracenedione analogs induce cytochrome c release, caspase-9,-3, and-8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling. Biochem Pharmacol 2004;67:523–37.

Liang Z, Ai J, Ding X, Peng X, Zhang D, Zhang R, et al. Anthraquinone Derivatives as potent inhibitors of c‑met kinase and the extracellular signaling pathway. ACS Med Chem Lett 2013;4:408−13.

Ellis LT, Perkins DF, Turner P, Hambley TW. The preparation and characterisation of cyclam/anthraquinone macrocycle/intercalator complexes and their interactions with DNA. Dalton Trans 2003;13:2728–36.

Venkata Ramana A, Watkinson M, Todd MH. Synthesis and DNA binding ability of cyclam–amino acid conjugates. Bioorg Med Chem Lett 2008;18:3007–10.

Adhikari A, Datta A, Adhikari M, Chauhan K, Chuttani K, Saw S, et al. Preclinical Evaluation of DO3A-Act-AQ: A Polyazamacrocyclic Monomeric Anthraquinone Derivative as a Theranostic Agent. Mol Pharm 2014;11:445−56.

Varshney R, Hazari PP, Uppal JK, Pal S, Stromberg R, Allard M, et al. Solid phase synthesis, radiolabeling and biological evaluation of a 99mTc-labeled αVβ3 tripeptide (RGD) conjugated to DOTA as a tumor imaging agent. Cancer Biol Ther 2011;11:893–901.

Panwar P, Iznaga-Escobar N, Mishra P, Srivastava V, Sharma RK, Chandra R, et al. Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-egfr antibody ior egf/r3 for targeted tumor imaging and therapy. Cancer Biol Ther 2005;4:854–60.

Jones JE, Pope SJ. Sensitised near-IR lanthanide luminescence exploiting anthraquinone-derived chromophores: Syntheses and spectroscopic properties. Dalton Trans 2009;39:8421‒5.

Jones JE, Kariuki BM, Ward BD, Pope SJ. Amino-anthraquinone chromophores functionalised with 3-picolyl units: structures, luminescence, DFT and their coordination chemistry with cationic Re(I) di-imine complexes. Dalton Trans 2011;40:3498–509.

Jones JE, Amoroso AJ, Dorin IM, Parigi G, Ward BD, Buurma NJ, et al. Bimodal, dimetallic lanthanide complexes that bind to DNA: The nature of binding and its influence on water relaxivity. Chem Comm 2011;47:3374‒6.

Balasingham RG, Williams CF, Mottram HJ, Coogan MP, Pope SJA. Gold (I) complexes derived from Alkynoxy-substituted anthraquinones: syntheses, luminescence, cytotoxicity and cell imaging studies. Organometallics 2012;31:5835−43.

Published

01-04-2015

How to Cite

Adhikari, A., A. Datta, K. Chuttani, H. Rawat, A. Shukla, and A. K. Mishra. “PRELIMINARY EVALUATION OF AN ANTHRAQUINONE CONJUGATED DOTA DERIVATIVE AS SPECT AGENT”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 4, Apr. 2015, pp. 85-89, https://journals.innovareacademics.in/index.php/ijpps/article/view/4821.

Issue

Section

Original Article(s)