REVOLUTIONIZING ANTIMICROBIAL DRUG DISCOVERY: COMPUTATIONAL DESIGN AND ADMET STUDIES OF EMERGING POTENT ANTI-MICROBIAL AGENTS

Authors

  • MADHURITA CHAKRABARTI Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India https://orcid.org/0009-0007-1189-415X

DOI:

https://doi.org/10.22159/ijpps.2023v15i8.48526

Keywords:

Antimicrobial, Benzimidazole quinoline derivatives, Molecular docking, PyRx, Swiss-ADME, Discovery studio 2021, ADMET, Staphylococcus aureus, Drug discovery

Abstract

Objective: This study focuses on designing potential antimicrobial agents, evaluating their binding affinity against target proteins, and assessing their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties using computational methods.

Methods: This study employed six target proteins from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and utilized Biovia Discovery Studio 2021 for their preparation. Marvin Sketch is used to draw the ten potential candidates and subjected to molecular docking using Python Prescription (PyRx) software. The Biovia Discovery Studio 2021 was used to visualize the docking outcomes, and ADMET properties were determined using Swiss ADME software.

Results: Docking experiments conducted on ten derivatives against six protein targets, specifically Sortase-A, Clumping factor A, Undecaprenyl diphosphate synthase, Dehydrosqualene synthase, Tyrosyl tRNA synthetase, and Dihydrofolate reductase. Out of the ten derivatives, compounds 1, 2, 3, 5, and 7 demonstrated a significant binding affinity for one or two target proteins. Notably, compound 8 exhibited exceptional docking scores against five of the six protein targets, establishing itself as the most potent ligand among the compounds tested. These results highlight the paramount significance of compound 8 for subsequent investigation. Furthermore, comprehensive documentation of the physicochemical properties of the potent derivatives was carried out.

Conclusion: The findings indicate that the examined compounds have the potential to effectively inhibit various microbial protein targets. In silico ADMET studies suggest that these compounds possess desirable drug-like properties. Therefore, these compounds hold promise as lead molecules for further research, potentially leading to the development of novel antimicrobial drugs.

Downloads

Download data is not yet available.

References

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015 Sep 7;109(7):309-18. doi: 10.1179/2047773215Y.0000000030, PMID 26343252, PMCID PMC4768623.

Mann A, Nehra K, Rana JS, Dahiya T. Antibiotic resistance in agriculture: perspectives on upcoming strategies to overcome upsurge in resistance. Curr Res Microb Sci. 2021 Apr 2;2:100030. doi: 10.1016/j.crmicr.2021.100030. PMID 34841321, PMCID PMC8610298.

Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017 May 15;6:47. doi: 10.1186/s13756-017-0208-x, PMID 28515903, PMCID PMC5433038.

Tamhankar AJ, Stalsby Lundborg C. Antimicrobials and antimicrobial resistance in the environment and its remediation: a global one health perspective. Int J Environ Res Public Health. 2019 Nov 20;16(23):4614. doi: 10.3390/ijerph16234614, PMID 31757109, PMCID PMC6926838.

Goyal A, Gupta S, Bhumbla U, Kaur K. Trends in the microbiological spectrum and antimicrobial resistance among icu patients diagnosed with bacteremia–a retrospective study. Asian J Pharm Clin Res. 2023;16(5):80-3. doi: 10.22159/ajpcr.2023.v16i5.46560.

Ohri S, Singh K, Sidhu SK, Oberoi L. Prevalence and antimicrobial resistance in enterococcus species. Asian J Pharm Clin Res 2023;16(6):30-3. doi: 10.22159/ajpcr.2023.v16i6.47283.

KR, Kakkassery JT, Raphael VP, Johnson R, K VT. In vitro antibacterial and in silico docking studies of two schiff bases on staphylococcus aureus and its target proteins. Futur J Pharm Sci. 2021 Dec;7(1):78. doi: 10.1186/s43094-021-00225-3.

Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X. Computational approaches in preclinical studies on drug discovery and development. Front Chem. 2020 Sep 11;8:726. doi: 10.3389/fchem.2020.00726, PMID 33062633, PMCID PMC7517894.

Morsy MA, Ali EM, Kandeel M, Venugopala KN, Nair AB, Greish K. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics (Basel). 2020 Apr 29;9(5):221. doi: 10.3390/antibiotics9050221, PMID 32365587, PMCID PMC7277330.

Pham EC, Thi Le TV, Truong TN. Design, synthesis, bio-evaluation, and in silico studies of some N-substituted 6-(chloro/nitro)-1H-benzimidazole derivatives as antimicrobial and anticancer agents. RSC Adv. 2022 Aug 3;12(33):21621-46. doi: 10.1039/d2ra03491c, PMID 35975065, PMCID PMC9347358.

Dokla EME, Abutaleb NS, Milik SN, Li D, El-Baz K, Shalaby MW. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur J Med Chem. 2020 Jan 15;186:111850. doi: 10.1016/j.ejmech.2019.111850. PMID 31735572.

Alasmary FA, Snelling AM, Zain ME, Alafeefy AM, Awaad AS, Karodia N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules. 2015 Aug 20;20(8):15206-23. doi: 10.3390/molecules200815206, PMID 26307956, PMCID PMC6332381.

Racane L, Zlatar I, Perin N, Cindric M, Radovanovic V, Banjanac M. Biological activity of newly synthesized benzimidazole and benzothizole 2,5-disubstituted furane derivatives. Molecules. 2021 Aug 14;26(16):4935. doi: 10.3390/molecules26164935, PMID 34443523, PMCID PMC8401404.

Morcoss MM, Abdelhafez ESMN, Ibrahem RA, Abdel-Rahman HM, Abdel-Aziz M, Abou El-Ella DA. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg Chem. 2020 Aug;101:103956. doi: 10.1016/j.bioorg.2020.103956. PMID 32512267.

Abd El-Karim S, Zaghary W, Anwar M, Awad G, Mahfouz N, Hussein G. Design, synthesis and molecular docking of new benzimidazole derivatives of potential antimicrobial activity as DNA gyrase and topoisomerase IV inhibitors. Egypt J Chem. 2021 Jul;64(7):3817-39. doi: 10.21608/ejchem.2021.75953.3714.

El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New J Chem. 2021 Jul 20;45(31):13986-4004. doi: 10.1039/D1NJ02838C.

Rahman M, Browne JJ, Van Crugten J, Hasan MF, Liu L, Barkla BJ. In silico, molecular docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Front Pharmacol. 2020 Sep 8;11:1340. doi: 10.3389/fphar.2020.01340, PMID 33013372, PMCID PMC7508056.

Bank R. RCSB PDB: homepage; 2023. Available from: https://www.rcsb.org. [Last accessed on 29 May 2023]

Biovia DS. Discovery Studio. San Diego: Dassault Systemes; 2021.

Marvin 23.7.0,2023. axon.com.

National Center for Biotechnology Information (US). PubChem. Bethesda: National Library of Medicine. National Center for Biotechnology Information. Available from: https://pubchem.ncbi.nlm.nih.gov. [Last accessed on 17 May 2023]

Hagstrand Aldman M, Kavyani R, Kahn F, Pahlman LI. Treatment outcome with penicillin G or cloxacillin in penicillin-susceptible staphylococcus aureus bacteraemia: a retrospective cohort study. Int J Antimicrob Agents. 2022 Apr;59(4):106567. doi: 10.1016/j.ijantimicag.2022.106567. PMID 35288257.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. doi: 10.1007/978-1-4939-2269-7_19, PMID 25618350.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi: 10.1038/srep42717, PMID 28256516, PMCID PMC5335600.

Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS. Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure-activity relationship and mechanistic insights. Mol Divers. 2022 Oct 5:1-30. doi: 10.1007/s11030-022-10537-y, PMID 36197551, PMCID PMC9533295.

Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm (Weinheim). 2021 Mar;354(3):e2000232. doi: 10.1002/ardp.202000232, PMID 33210348.

Podunavac Kuzmanovic SO, Cvetkovic DD, Barna DJ. The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives. J Serb Chem Soc. 2008;73(10):967-78. doi: 10.2298/JSC0810967P.

Wang YN, Bheemanaboina RRY, Cai GX, Zhou CH. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant staphylococcus aureus DNA groove. Bioorg Med Chem Lett. 2018 May 15;28(9):1621-8. doi: 10.1016/j.bmcl.2018.03.046. PMID 29598912.

Moellering RC Jr. Discovering new antimicrobial agents. Int J Antimicrob Agents. 2011 Jan;37(1):2-9. doi: 10.1016/j.ijantimicag.2010.08.018. PMID 21075608.

Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021 Sep 09;8(1):48. doi: 10.1186/s40779-021-00343-2, PMID 34496967.

Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L. Antimicrobial peptides: promising alternatives in the post-feeding antibiotic era. Med Res Rev. 2019 May;39(3):831-59. doi: 10.1002/med.21542, PMID 30353555.

Published

01-08-2023

How to Cite

CHAKRABARTI, M. “REVOLUTIONIZING ANTIMICROBIAL DRUG DISCOVERY: COMPUTATIONAL DESIGN AND ADMET STUDIES OF EMERGING POTENT ANTI-MICROBIAL AGENTS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 8, Aug. 2023, pp. 28-35, doi:10.22159/ijpps.2023v15i8.48526.

Issue

Section

Original Article(s)