A MASS COMPATIBLE UPLC METHOD FOR THE QUANTIFICATION OF IMPURITIES IN FLUTICASONE PROPIONATE NASAL SPRAY
Keywords:
Fluticasone propionate, UPLC, Nasal spray, Impurities, Method validationAbstract
Objective: The objectives of the present study were to develop and validate a mass-compatible ultra-performance liquid chromatography (UPLC) method to quantify the impurities in fluticasone nasal spray, and to establish a suitable container-closure system for the formulation.
Methods: A gradient method was optimized with a flow rate of 0.5 ml/min, detector wavelength-240 nm, run time-25 min and 0.1% Trifluoroacetic acid (TFA) in water as solvent A and Methanol as solvent B.
Results: The developed method was linear over the range of 0.07-1.10 µg/ml for impurity-I, 0.16-2.47 µg/ml for impurity-II, 0.67-10.0 µg/ml for impurity-III, and 1.29-19.3 µg/ml for impurity-IV. The limit of quantification (LOQ) and limit of detection (LOD) were established as 0.07 and 0.02 µg/ml, 0.14 and 0.05 µg/ml, 0.59 and 0.19 µg/ml, 1.06 and 0.35 µg/ml for impurities I-IV respectively. The percent relative standard deviation (%RSD) of the replicate analysis for impurities I-IV, was within the acceptance criteria (0.4, 0.2, 0.3, and 0.1% respectively) that proved the precision of the method. The accuracy of the method was studied from 50%-150% of test concentration and the results ranged from 100.3% to 109.4%. The container-closure compatibility study revealed that the solution stored in the glass container system did not generate any additional peaks in the chromatogram.
Conclusion: Hence, the developed method can be employed by quality testing laboratories to quantify impurities in fluticasone propionate nasal spray. The study also suggests that glass containers could serve as a compatible system for the storage of fluticasone propionate nasal solution.
Downloads
Published
How to Cite
Issue
Section
Copyright (c) 2023 MUGADA RAVI PRASADA RAO, RAMA KRISHNA THOTA, MAHIBALAN SENTHI, PAUL MOGADATI, SRINIVAS ARUTLA
This work is licensed under a Creative Commons Attribution 4.0 International License.