ADVANCES IN COCRYSTALS OF ANTICANCER AGENTS: FORMULATION STRATEGIES AND THERAPEUTIC IMPLICATIONS

Authors

  • APARNA SINGH Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India https://orcid.org/0009-0000-6133-8214
  • VISHAKHA JAISWAL Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India https://orcid.org/0000-0001-5676-8922
  • SHRADHA BISHT Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India https://orcid.org/0000-0001-7500-766X

DOI:

https://doi.org/10.22159/ijpps.2024v16i6.51044

Keywords:

Cocrystal, Cancer, Drug-drug co-crystal, Co-former, Green synthesis, Synthon approach

Abstract

Cancer remains one of the most pressing health concerns worldwide, driving continuous efforts in pharmaceutical research to develop more effective treatments. In the ever-evolving landscape of cancer therapy, cocrystals stand as promising contenders, offering enhanced solubility, stability, and bioavailability to traditional anticancer agents. Co-crystallization, a strategy emerging at the nexus of pharmaceutical and crystal engineering. From the fundamental principles of cocrystal engineering to advanced spectroscopic and crystallographic methodologies, each aspect is meticulously dissected to unveil the transformative potential of cocrystals in oncology. The review elucidates the transformative potential of cocrystals in oncology, highlighting their capacity to revolutionize drug delivery and efficacy. Recent advancements in the field are comprehensively examined, showcasing the promising role of anticancer cocrystals in paving the way for novel therapeutic strategies and improved patient outcomes. Cocrystals represent a promising avenue in cancer therapy, offering significant enhancements to traditional anticancer agents. Through a comprehensive exploration of recent advancements, this article navigates the complex terrain of anticancer cocrystals, drug-drug cocrystals, paving the way for novel therapeutic strategies and improved patient outcomes.

Downloads

Download data is not yet available.

References

Novais MV, Gomes ER, Miranda MC, Silva JO, Gomes DA, Braga FC. Liposomes co-encapsulating doxorubicin and glucoevatromonoside derivative induce synergic cytotoxic response against breast cancer cell lines. Biomed Pharmacother. 2021 Apr 1;136:111123. doi: 10.1016/j.biopha.2020.111123, PMID 33486211.

Layek B, Gidwani B, Tiwari S, Joshi V, Jain V, Vyas A. Recent advances in lipid-based nano drug delivery systems in cancer therapy. Curr Pharm Des. 2020 Aug 1;26(27):3218-33. doi: 10.2174/1381612826666200622133407, PMID 32568015.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.

Lambert JM, van Delft FL. Introduction to antibody-drug conjugates. In: van De FL and Lambert JM. editors. Chemical linkers in antibody-drug conjugates (ADCs). Royal Society of Chemistry; 2021. p. 1-31.

Cooper GM, Hausman RE. The development and causes of cancer. Cell Mol Biol. 2000;2:719-28.

Kara DD, Rathnanand M. Cocrystals and drug-drug cocrystals of anticancer drugs: A perception towards screening techniques, preparation, and enhancement of drug properties. Crystals. 2022 Sep 21;12(10):1337. doi: 10.3390/cryst12101337.

Sawicki E, Schellens JH, Beijnen JH, Nuijen BJ. Inventory of oral anticancer agents: pharmaceutical formulation aspects with focus on the solid dispersion technique. Cancer Treat Rev. 2016 Nov 1;50:247-63. doi: 10.1016/j.ctrv.2016.09.012, PMID 27776286.

Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI. Advancements in the oral delivery of docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine. 2018 Jun 8;13:3145-61. doi: 10.2147/IJN.S164518, PMID 29922053.

Han W, Xie B, Li Y, Shi L, Wan J, Chen X. Orally deliverable nanotherapeutics for the synergistic treatment of colitis-associated colorectal cancer. Theranostics. 2019;9(24):7458-73. doi: 10.7150/thno.38081, PMID 31695780.

Gala UH, Miller DA, Williams III RO. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer. 2020 Jan 1;1873(1):188319. doi: 10.1016/j.bbcan.2019.188319, PMID 31678141.

Chavda H, Patel C, Anand I. Biopharmaceutics classification system. Syst Rev Pharm. 2010;1(1):62. doi: 10.4103/0975-8453.59514.

Suzuki M, Takebe G, Takagi T, Tsukada H. Characterization of novel paclitaxel nanoparticles prepared by laser irradiation. Chem Pharm Bull (Tokyo). 2022 Apr 1;70(4):269-76. doi: 10.1248/cpb.c21-00994, PMID 35370203.

Parvataneni DM, Devraj R, Mangamoori LN. Micelles entrapped microparticles technology: a novel approach to resolve dissolution and bioavailability problems of poorly water-soluble drugs. J Microencapsul. 2020 Apr 2;37(3):254-69. doi: 10.1080/02652048.2020.1729883, PMID 32052664.

Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020 Feb 15;145:282-300. doi: 10.1016/j.ijbiomac.2019.12.145, PMID 31870872.

Guo W, Du S, Lin Y, Lu B, Yang C, Wang J. Structural and computational insights into the enhanced solubility of dipfluzine by complexation: salt and salt-cocrystal. New J Chem. 2018;42(18):15068-78. doi: 10.1039/C8NJ01576G.

Tran PH, Lee BJ, Tran TT. Strategies and formulations of freeze-dried tablets for controlled drug delivery. Int J Pharm. 2021 Mar 15;597:120373. doi: 10.1016/j.ijpharm.2021.120373, PMID 33577912.

Khanfar M, Al-Remawi M, Al-Akayleh F, Hmouze S. Preparation and evaluation of co-amorphous formulations of telmisartan-amino acids as a potential method for solubility and dissolution enhancement. AAPS PharmSciTech. 2021 Apr;22(3):112. doi: 10.1208/s12249-021-01952-9, PMID 33748914.

Karki S, Friscic T, Fabian L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009 Oct 19;21(38-39):3905-9. doi: 10.1002/adma.200900533.

Aitipamula S, Tan BH. Pharmaceutical co-crystals: crystal engineering and applications. Multi-component crystals: synthesis, concepts, function Tiekink ER, Schpector JZ, editors; 2018. p. 1-27.

Ferretti V, Dalpiaz A, Bertolasi V, Ferraro L, Beggiato S, Spizzo F. Indomethacin co-crystals and their parent mixtures: does the intestinal barrier recognize them differently? Mol Pharm. 2015 May 4;12(5):1501-11. doi: 10.1021/mp500826y, PMID 25794305.

Nugrahani I, Parwati RD. Challenges and progress in nonsteroidal anti-inflammatory drugs co-crystal development. Molecules. 2021 Jul 9;26(14):4185. doi: 10.3390/molecules26144185, PMID 34299458.

Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN, Pratiwi YS. Cocrystal of ibuprofen nicotinamide: solid-state characterization and in vivo analgesic activity evaluation. Sci Pharm. 2018;86(2):23. doi: 10.3390/scipharm86020023, PMID 29867030.

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012 May 2;12(5):2147-52. doi: 10.1021/cg3002948.

Cerreia Vioglio PC, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017 Aug 1;117:86-110. doi: 10.1016/j.addr.2017.07.001, PMID 28687273.

Malamatari M, Ross SA, Douroumis D, Velaga SP. Experimental cocrystal screening and solution-based scale-up cocrystallization methods. Adv Drug Deliv Rev. 2017 Aug 1;117:162-77. doi: 10.1016/j.addr.2017.08.006, PMID 28811184.

Kara DD, Rathnanand M. Cocrystals and drug-drug cocrystals of anticancer drugs: a perception towards screening techniques, preparation, and enhancement of drug properties. Crystals. 1337;12(10). doi: 10.3390/cryst12101337.

Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem. 1991 Jun;95(12):4601-10. doi: 10.1021/j100165a007.

Sopyan IY, Alvin B, Insan Sunan KS, Megantara SA. Systematic review: co-crystal as efforts to improve physicochemical and bioavailability properties of oral solid dosage form. Int J App Pharm. 2021 Jan 7;13(1):43-52. doi: 10.22159/ijap.2021v13i1.39594.

Yadav S, Gupta PC, Sharma N, Kumar J. Cocrystals: an alternative approach to modify physicochemical properties of drugs. J Pharm Chem Biol Sci. 2015 Apr 1;5(2).

Devogelaer JJ, Brugman SJ, Meekes H, Tinnemans P, Vlieg E, de Gelder R. Cocrystal design by network-based link prediction. Cryst Eng Comm. 2019;21(44):6875-85. doi: 10.1039/C9CE01110B.

Devogelaer JJ, Meekes H, Tinnemans P, Vlieg E, De Gelder R. Co‐crystal prediction by artificial neural networks. Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21711-8. doi: 10.1002/anie.202009467, PMID 32797658.

Buddhadev SS, Garala KC. Pharmaceutical cocrystals-a review. Proceedings. 2020;62(1):14. doi: 10.3390/proceedings2020062014.

Saraf GJ, Burade KK, Gonjari ID, Hosmani AH, Pawar AA. A review on advances in pharmaceutical co-crystal preparation routes, intellectual property perspective and regulatory aspects. Int J Curr Pharm Sci. 2022 Sep 15;14(5):4-12. doi: 10.22159/ijcpr.2022v14i5.2038.

Medina C, Daurio D, Nagapudi K, Alvarez Nunez F. Manufacture of pharmaceutical co‐crystals using twin screw extrusion: a solvent‐less and scalable process. J Pharm Sci. 2010 Apr 1;99(4):1693-6. doi: 10.1002/jps.21942, PMID 19774652.

Gajda M, Nartowski KP, Pluta J, Karolewicz B. Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing-State of the art. Int J Pharm. 2019 Mar 10;558:426-40. doi: 10.1016/j.ijpharm.2019.01.016, PMID 30664997.

Bidhuri N, Padhi S. Review on comprehensive description of development and assessment of co-crystal drug delivery system. Int J App Pharm. 2023 Sep 07;13:10-6. doi: 10.22159/ijap.2023v15i5.48579.

Przybyłek M, Ziołkowska D, Kobierski M, Mroczyńska K, Cysewski P. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea. J Cryst Growth. 2016 Jan 1;433:128-38. doi: 10.1016/j.jcrysgro.2015.10.015.

Urano M, Kitahara M, Kishi K, Goto E, Tagami T, Fukami T. Physical characteristics of cilostazol-hydroxybenzoic acid cocrystals prepared using a spray drying method. Crystals. 2020 Apr 17;10(4):313. doi: 10.3390/cryst10040313.

Yang J, Hong B, Wang N, Li X, Huang X, Bao Y. Thermodynamics and molecular mechanism of the formation of the cocrystals of p -hydroxybenzoic acid and glutaric acid. Cryst Eng Comm. 2019;21(42):6374-81. doi: 10.1039/C9CE01092K.

Ngilirabanga JB, Samsodien H. Pharmaceutical co‐crystal: an alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select. 2021 Mar;2(3):512-26. doi: 10.1002/nano.202000201.

Waterman KC, Waterman AK, Botoy TM, Li J, Qiu F, Hawley M. Stability screening of pharmaceutical cocrystals. Pharm Dev Technol. 2021 Nov 26;26(10):1130-5. doi: 10.1080/10837450.2021.2004607, PMID 34751078.

da Silva CC, Pepino RO, de Melo CC, Tenorio JC, Ellena J. Controlled synthesis of new 5-fluorocytosine cocrystals based on the p K a rule. Cryst Growth Des. 2014 Sep 3;14(9):4383-93. doi: 10.1021/cg500502j.

Duan C, Liu W, Tao Y, Liang F, Chen Y, Xiao X. Two novel palbociclib-resorcinol and palbociclib-orcinol cocrystals with enhanced solubility and dissolution rate. Pharmaceutics. 2021 Dec 23;14(1):23. doi: 10.3390/pharmaceutics14010023, PMID 35056919.

Yu YM, Niu YY, Wang LY, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly and perfected in vitro/vivo property of 5-fluorouracil and ferulic acid on the strength of double optimized strategy: the first 5-fluorouracial-phenolic acid nutraceutical cocrystal with synergistic antitumor efficacy. Analyst. 2021;146(8):2506-19. doi: 10.1039/d1an00171j, PMID 33899060.

Yu YM, Liu L, Bu FZ, Li YT, Yan CW, Wu ZY. A novice cocrystal nanomicelle formulation of 5-fluorouracil with proline: the design, self-assembly and in vitro/vivo biopharmaceutical characteristics. Int J Pharm. 2022 Apr 5;617:121635. doi: 10.1016/j.ijpharm.2022.121635, PMID 35257803.

Zhang Y, Yang R, Yin HM, Zhou B, Hong M, Zhu B. Cocrystals of flavonoids with 4,4′-ethylenebispyridine: crystal structures analysis, dissolution behavior, and anti-tumor activity. J Mol Struct. 2022 Mar 15;1252:132150. doi: 10.1016/j.molstruc.2021.132150.

Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des. 2020 Feb 10;20(4):2406-14. doi: 10.1021/acs.cgd.9b01570.

Xu LL, Chen JM, Yan Y, Lu TB. Improving the solubility of 6-mercaptopurine via cocrystals and salts. Cryst Growth Des. 2012 Dec 5;12(12):6004-11. doi: 10.1021/cg3010745.

Ren BY, Dai XL, Chen JM, Lu TB. Two anhydrous forms and one monohydrate of a cocrystal of axitinib and glutaric acid: characterization, property evaluation and phase transition study. Cryst Eng Comm. 2022;24(11):2138-48. doi: 10.1039/D1CE01740C.

Anand RA, Nanda AR. Formulation and evaluation of co-crystals of a BCS class II drug using glycine as co-former. Int J Appl Pharm. 2022 Nov 07;14(6):68-76.

Almansa C, Merce R, Tesson N, Farran J, Tomas J, Plata Salaman CR. Co-crystal of tramadol hydrochloride–celecoxib (CTC): a novel API–API co-crystal for the treatment of pain. Cryst Growth Des. 2017 Apr 5;17(4):1884-92. doi: 10.1021/acs.cgd.6b01848.

Published

01-06-2024

How to Cite

SINGH, A., V. JAISWAL, and S. BISHT. “ADVANCES IN COCRYSTALS OF ANTICANCER AGENTS: FORMULATION STRATEGIES AND THERAPEUTIC IMPLICATIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 6, June 2024, pp. 27-32, doi:10.22159/ijpps.2024v16i6.51044.

Issue

Section

Review Article(s)