PRODUCTION AND CHARACTERIZATION OF CHITOOLIGOSACCHARIDE HYDROLYSATE PREPARED FROM CHITOSANASE ENZYME OF MARINE ISOLATES
DOI:
https://doi.org/10.22159/ijpps.2024v16i8.51671Keywords:
COS, Marine origin, Diabetic foot ulcer, Fourier transform infrared spectroscopy (FT-IR), Nuclear magnetic resonance (NMR), X-ray diffraction (XRD) analysis, Antimicrobial activityAbstract
Objective: The present study was carried out to develop an enzymatic hydrolysate with unique biological properties targeting diabetic foot ulcers.
Methods: Chitosanase-producing organisms were isolated and used to create chitooligosaccharide hydrolysate. Various techniques, such as FTIR, NMR, and X-ray diffraction, were used. Antimicrobial activity was tested using disc diffusion and well diffusion methods. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined through the Chitooligosaccharide-Broth Dilution Method.
Results: The study identified marine mud samples and isolated S9, S15, and SF12 as significant sources of chitosanase production. The partially purified chitosanolytic enzymes produced by these isolates were hydrolyzed in a 1% chitosan solution at 180 °C, revealing more prominent antimicrobial activity. The Chitooligosaccharide Hydrolysate (COS) preparation was fixed at 45 °C, pH 5.5, for 180 min. The chitosanase enzyme was soluble in four solvents and insoluble in ethanol, acetone, and diethyl ether. All COS hydrolysates prepared showed antimicrobial activity against foot ulcer pathogens, Pseudomonas sp., and Candida albicans. S9 COS showed higher activity than SF12 hydrolysates against foot ulcer pathogens. The COS hydrolysate showed significantly stronger antimicrobial activities than chitosan and chitosanase.
Conclusion: The present study concludes that COS hydrolysate and its biological functions are applicable for diabetic foot ulcer treatment. Further investigation into the efficacy of COS against diverse infectious pathogens is needed.
Downloads
References
Xue T, Wang W, Yang Z, Wang F, Yang L, Li J. Accurate determination of the degree of deacetylation of chitosan using UPLC-MS/MS. Int J Mol Sci. 2022;23(15). doi: 10.3390/ijms23158810. PMID 35955947.
Fang Z, Cong W, Zhou H, Zhang J, Wang M. Biological activities, mechanisms and applications of chitooligosaccharides in the food industry. J Funct Foods. 2024 May 1;116:106219. doi: 10.1016/j.jff.2024.106219.
Jimenez Gomez CP, Cecilia JA. Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules. 2020 Sep 1;25(17):3981. doi: 10.3390/molecules25173981, PMID 32882899.
Bonin M, Sreekumar S, Cord Landwehr S, Moerschbacher BM. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int J Mol Sci. 2020;21(21):7835. doi: 10.3390/ijms21217835, PMID 33105791.
Huq T, Khan A, Brown D, Dhayagude N, He Z, Ni Y. Sources, production and commercial applications of fungal chitosan: a review. J Bioresour Bioprod. 2022 May 1;7(2):85-98. doi: 10.1016/j.jobab.2022.01.002.
Abdelhamid HN. Chitosan-based nanocarriers for gene delivery. Nanoeng Biomater. 2022 Feb 14:91-105.
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X. Nanochitin: chemistry, structure, assembly, and applications. Chem Rev. 2022 Jun 2;122(13):11604-74. doi: 10.1021/acs.chemrev.2c00125, PMID 35653785.
Ssekatawa K, Byarugaba DK, Wampande EM, Moja TN, Nxumalo E, Maaza M. Isolation and characterization of chitosan from ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci Rep. 2021 Feb 18;11(1):4116. doi: 10.1038/s41598-021-81880-7, PMID 33602952.
Khan F, Pham DT, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and their derivatives: antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces. 2020 Jan 1;185:110627. doi: 10.1016/j.colsurfb.2019.110627, PMID 31732391.
Boi VN, Trang NT, Cuong DX, Hoan VT, Hai l. Oligosaccharide chitosan: viscosity, molecular weight, antibacterial activity, and impact of γ radiation. World. 2020 Apr 29;4(2):40-5.
Ul-Islam M, Alabbosh KF, Manan S, Khan S, Ahmad F, Ullah MW. Chitosan-based nanostructured biomaterials: synthesis, properties, and biomedical applications. Adv Ind Eng Polym Res. 2024;7(1):79-99. doi: 10.1016/j.aiepr.2023.07.002.
Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym. 2020 Aug 1;241:116363. doi: 10.1016/j.carbpol.2020.116363, PMID 32507164.
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and applications of chitosan. Polymers. 2021 Mar 15;13(6):904. doi: 10.3390/polym13060904, PMID 33804268.
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B. Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics. 2023 Apr 21;15(4):1313. doi: 10.3390/pharmaceutics15041313, PMID 37111795.
Khalaf EM, Abood NA, Atta RZ, Ramirez Coronel AA, Alazragi R, Parra RM. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: a comprehensive review. Int J Biol Macromol. 2023 Mar 15;231:123354. doi: 10.1016/j.ijbiomac.2023.123354, PMID 36681228.
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol. 2020 Dec 1;164:2726-44. doi: 10.1016/j.ijbiomac.2020.08.153, PMID 32841671.
Su H, Sun J, Jia Z, Zhao H, Mao X. Insights into promiscuous chitosanases: the known and the unknown. Appl Microbiol Biotechnol. 2022 Nov 1;106(21):6887-98. doi: 10.1007/s00253-022-12198-1, PMID 36178516.
Vanathi P. Production, optimization and application of chitosanase enzyme from marine Actinomycetes-Streptomyces massasporeus. Afr J Bio Sci. 2024 May 6;6(10).
Vanathi P. Production, characterization, application of chitologiosaccharides hydrolysate with partially purified chitosanase enzyme from marine isolate Brevidomonas Diminuta. Int J Pharmacol Res. 2024 Jun 1;15(6):1835-44.
Vanathi P, Fernandez S, Shanmugapriya M. Production and characterization of partially purified chitosanase enzyme of Bacillus cereus A4/B4 isolated from biowaste soil samples: bioactive chitooligosaccharide. Food Sci Indian J Res Food Sci Nutr. 2015 Dec 1;2(2):41-8.
Jedrzejczak E, Frąckowiak P, Sibillano T, Brendler E, Giannini C, Jesionowski T. Isolation and structure analysis of chitin obtained from different developmental stages of the mulberry silkworm (Bombyx mori). Molecules. 2024 Apr 23;29(9):1914. doi: 10.3390/molecules29091914, PMID 38731405.
Yin N, Du R, Zhao F, Han Y, Zhou Z. Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide. Carbohydr Polym. 2020 Feb 1;229:115520. doi: 10.1016/ j.carbpol.2019.115520, PMID 31826404.
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep. 2022 Apr 22;12(1):6613. doi: 10.1038/s41598-022-10423-5, PMID 35459772.
Boschetti G, Sgarabotto D, Meloni M, Bruseghin M, Whisstock C, Marin M. Antimicrobial resistance patterns in diabetic foot infections, an epidemiological study in Northeastern Italy. Antibiotics (Basel). 2021;10(10):1241. doi: 10.3390/ antibiotics10101241, PMID 34680820.
Silva NS, Araujo NK, Daniele Silva A, Oliveira JW, Medeiros JM, Araujo RM. Antimicrobial activity of chitosan oligosaccharides with special attention to antiparasitic potential. Mar Drugs. 2021 Feb 12;19(2):110. doi: 10.3390/md19020110, PMID 33673266.
El-Beltagi HS, El-Mahdy OM, Mohamed HI, El-Ansary AE. Antioxidants, antimicrobial, and anticancer activities of purified chitinase of talaromyces funiculosus Strain CBS 129594 biosynthesized using crustacean bio-wastes. Agronomy. 2022 Nov 12;12(11):2818. doi: 10.3390/agronomy12112818.
Kowalska Krochmal B, Dudek Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021 Feb 4;10(2):165. doi: 10.3390/pathogens10020165, PMID 33557078.
Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020 Jul 23;7(1):105-9. doi: 10.1080/26415275.2020.1796674, PMID 32939454.
Miguez N, Kidibule P, Santos Moriano P, Ballesteros AO, Fernandez Lobato M, Plou FJ. Enzymatic synthesis and characterization of different families of chitooligosaccharides and their bioactive properties. Appl Sci. 2021 Apr 3;11(7):3212. doi: 10.3390/app11073212.
Wang K, Yu D, Bai Y, Cao H, Guo J, Su Z. Isolation and purification of chitosan oligosaccharides (Mw ≤ 1000) and their protective effect on acute liver injury caused by CCl4. Mar Drugs. 2024 Mar 8;22(3):128. doi: 10.3390/md22030128, PMID 38535469.
Paoletti F, El-Sagheer AH, Allard J, Brown T, Dushek O, Esashi F. Molecular flexibility of DNA as a key determinant of RAD51 recruitment. EMBO J. 2020;39(7):e103002. doi: 10.15252/embj.2019103002, PMID 31943278.
de Andrade RC, de Araújo NK, Torres Rego M, Furtado AA, Daniele Silva A, de Souza Paiva W. Production and characterization of chitooligosaccharides: evaluation of acute toxicity, healing, and anti-inflammatory actions. Int J Mol Sci. 2021 Sep 30;22(19):10631. doi: 10.3390/ijms221910631, PMID 34638973.
Li J, Tang R, Zhang P, Yuan M, Li H, Yuan M. The preparation and characterization of chitooligosaccharide-polylactide polymers, and in vitro release of microspheres loaded with vancomycin. J Funct Biomater. 2022 Aug 4;13(3):113. doi: 10.3390/jfb13030113, PMID 35997451.
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol. 2023 May 19;11:1190879. doi: 10.3389/fbioe.2023.1190879, PMID 37274159.
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chem X. 2021;12:100168. doi: 10.1016/j.fochx.2021.100168, PMID 34877528.
Chen X, Wu X, Zhang K, Sun F, Zhou W, Wu Z. Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea. Food Hydrocoll. 2022 Aug 1;129:107667. doi: 10.1016/j.foodhyd.2022.107667.
Campanale C, Savino I, Massarelli C, Uricchio VF. Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers. 2023 Feb 11;15(4):911. doi: 10.3390/polym15040911, PMID 36850194.
Fumoto E, Sato S, Takanohashi T. Determination of carbonyl functional groups in heavy oil using infrared spectroscopy. Energy Fuels. 2020 Jan 24;34(5):5231-5. doi: 10.1021/acs.energyfuels.9b02703.
Islam MM, Islam R, Mahmudul Hassan SM, Karim MR, Rahman MM, Rahman S. Carboxymethyl chitin and chitosan derivatives: synthesis, characterization and antibacterial activity. Carbohydrate Polymer Technologies and Applications. 2023;5. doi: 10.1016/j.carpta.2023.100283.
Igcı N, Demiralp FD. A fourier transform infrared spectroscopic investigation of Macrovipera lebetina lebetina and M. l. obtusa crude venoms. Eur J Biol. 2020 Jun 1;79(1):14-22.
Giraldo JD, García Y, Vera M, Garrido Miranda KA, Andrade Acuna D, Marrugo KP. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym. 2024;332:121924. doi: 10.1016/j.carbpol.2024.121924, PMID 38431399.
Xu T, Sun R, Zhang Y, Zhang C, Wang Y, Wang ZA. Recent research and application prospect of functional oligosaccharides on intestinal disease treatment. Molecules. 2022 Nov 7;27(21):7622. doi: 10.3390/molecules27217622, PMID 36364447.
Xu Y, Wang H, Zhu B, Yao Z. Biochemical characterization and elucidation action mode of a new endolytic chitosanase for efficient preparation of chitosan oligosaccharides. Biomass Conv Bioref. 2023 Feb 4:1-9. doi: 10.1007/s13399-023-03870-1.
Hirano S. Applications of chitin and chitosan in the ecological and environmental fields. Inapplications of Chitan and chitosan. CRC Press; 2020 Aug 18. p. 31-54.
Másson M. Antimicrobial properties of chitosan and its derivatives. In: Chitosan for biomaterials. Berlin: Springer International Publishing; 2021. p. 131-68. doi: 10.1007/12_2021_104.
Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: a review. Processes. 2020 Sep 17;8(9):1173. doi: 10.3390/pr8091173.
Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J. 2020 Sep 5;138:109984. doi: 10.1016/j.eurpolymj.2020.109984.
Victoria T NS, Kumari T SD, lazarus B. Antibacterial activity of chitosan on faecal indicator bacteria isolated from sewage outfall nearby Kanyakumari coast. J Adv Zool. 2024 Apr 1;45(2).
Sambyal K, Sharma P, Singh RV. Antimicrobial activity of chitooligosaccharides. In: Chitooligosaccharides: prevention and control of diseases. Berlin: Springer International Publishing; 2022. p. 301-7.
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules. 2021 Nov 25;26(23):7136. doi: 10.3390/molecules26237136, PMID 34885715.
Attjioui M, Gillet D, El Gueddari NE, Moerschbacher BM. Synergistic antimicrobial effect of chitosan polymers and oligomers. Mol Plant Microbe Interact. 2021 Jul 30;34(7):770-8. doi: 10.1094/MPMI-07-20-0185-R, PMID 33683142.
Published
How to Cite
Issue
Section
Copyright (c) 2024 P. VANATHI
This work is licensed under a Creative Commons Attribution 4.0 International License.