NANO TUBE TITANIUM DIOXIDE / TITANIUM ELECTRODE FABRICATION WITH NITROGEN AND SILVER METAL DOPED ANODIZING METHOD: PERFORMANCE TEST OF ORGANIC COMPOUND RHODAMINE B DEGRADATION

Authors

  • Maulidiyah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
  • Muhammad Nurdin Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
  • Dwiprayogo Wibowo Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
  • Asrul Sani Department of Mathematic, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo

Keywords:

TiO2Ti, Silver (Ag), Nitrogen (N), Rhodamine B, Anodizing, Photoelectrocatalytic

Abstract

Objective: The objective of this study was to prepare the titanium dioxide (TiO2) by using Anodizing method that was subsequently coated with nitrogen (N) and silver metal (Ag) in the TiO2/Ti matrix.

Methods: The preparation of N-TiO2/Ti using the sol-gel method was carried out by adding 3 ml of 5M NH4Cl as the source of nitrogen with a dip-coating technique. Ag@TiO2/Ti was prepared using an electrodeposition method with 0.1M AgNO3 solution in 0.5% EDTA as the source of Ag metal dopants for one minute.

Results: Photocurrent response test using the Linear Sweep Voltametry (LSV) showed that the TiO2/Ti electrode becomes active when irradiated UV light, while the addition of dopants makes nonmetal (N-TiO2/Ti) and metal (Ag@TiO2/Ti) active in visible or UV light irradiation. The analysis of Rhodamine B organic compound degradation by using UV-Vis spectrophotometer showed that the TiO2/Ti electrode was active in UV light irradiation at degradation rate 0.09 min-1, while N-TiO2/Ti and Ag@TiO2/Ti were active in visible light irradiation at degradation rate 0.0372 min-1 and 0.0732 min-1, respectively.

Conclusion: The photoelectrocatalytic activity test to degrade organic compound of Rhodamine B showed that N-TiO2/Ti and Ag@TiO2/Ti electrode were able to be active in visible light.

Downloads

Download data is not yet available.

Author Biographies

Maulidiyah, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo

Lecturer of Organic Chemistry at Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia.

Muhammad Nurdin, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo

Lecturer of Environmental Chemistry at Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia.

Dwiprayogo Wibowo, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo

Student at Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia.

Asrul Sani, Department of Mathematic, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo

Lecturer of Mathematic at Department of Mathematic, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Indonesia.

References

Daghrir R, Drogui P, Robert D. Photoelectrocataltyic technologies for environmental applications. J Photochem Photobiol: A 2012;238:41-52.

Merck Index. Chemistry Constant Companion, Now with a New Additon. Ed 14Th. 1410, 1411, Merck & Co Inc, Whitehouse Station; 2006.

Safni, Maizatisna, Zulfarman, Sakai T. Degradasi zat warna naphtol blue black secara sonolisis dan fotolisis dengan penambahan TiO2-Anatase. J Kris Kim 2007;1:1.

Guaraldo TT, Pulcinelli SH, Zanoni MVB. Influence of particle size on the photoactivity of Ti/TiO2 thin film electrodes, and enhanced photoelectrocatalytic degradation of indigo carmine dye. J Photochem Photobiol: A 2011;217:259-66.

Mahoney L, Koodali RT. Modified TiO2 material with the approach to use a molecule template (surfactants). Materials 2014;7:2697-746.

Nurdin M. Preparation, Characterization and Photoelectrocatalytic activity of Cu@N-TiO2/Ti Thin Film Electrode. Int J Pharma Bio Sci 2014;5:360-9.

Ruslan Abd, Wahid Wahab, Nafie NL, Nurdin M. Synthesis and characterization of electrodes N-TiO2/Ti for chemical oxygen demand sensor with visible light response flow. Int J Sci Technol Res 2013;2:220-4.

Nurdin M, Wibowo W, Supriyono, Febrian MB, Surahman H, Krisnandi YK, et al. Pengembangan metode baru penentuan chemical oxygen demand (COD) Berbasis sel fotoelektrokimia: Karakterisasi elektroda kerja lapis tipis TiO2/ITO. J Makara Sains 2009;13:1-8.

Ye S, Shen S, Ye L, Song X, Luo S. Enhancement of the photoelectrocatalytic activity of TiO2/ACF for ethylene removal by Ag nanoparticles synthesized by γ-rayradiolysis. Mater Sci Semicond Process 2014;27:397-403.

Zhang J, Zhou B, Zheng Q, Li J, Bai J, Liu Y, Cai W. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array. Water Res 2009;43:1986-92.

Yogi C, Kojima K, Wada N, Tokumoto H, Takai T, Mizoguchi, et al. Photocatalytic degradation of methylene blue by TiO2 Film and Au particles-TiO2 composite film. Thin Solid Films 2008;516:5881-4.

Wang DB, Yu F, Zhou C, Wang W, Liu. Synthesis and characterization of anatase TiO2 nano tubes and their use in dye-sensitized solar cells. Materials Chem Phys 2008;113:602–6.

Whang H, Huang M, Hseih, J Chen. Laser induced silver nanoparticles on Titanium di oxide for photocatalytic degradation of methylene blue. Int J Mol Sci 2009;10:4707-18.

Aditi R, Gandhe, Julio, B Fernandes. A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J Solid State Chem 2005;178:2953–7.

Zaleska A. Doped-TiO2: A Review. Recent Pat Eng 2008;2(3):157-64.

Nurdin M, Maulidiyah. Fabrication of TiO2/Ti Nanotube electrode by anodizing method and its application on photoelectrocatalytic system. Int J Sci Technol Res 2014;3:122-6.

Konjari RS, Jacob AA, Jayanthi S, Ramalingam C, Ethiraj SA. Invenstigation of biogenic silver nanoparticles green synthesized from carica papaya. Int J Pharm Pharm Sci 2015;7(3):107-10.

Quan X, Ruan X, Zhao H, Chen S, Zhao Y. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Polution 2007;147:409-14.

Ou H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol 2007;58:179-91.

Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, et al. The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J Mater Sci 2008;43:1880-4.

El ruby Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light response photoanode, a review. Energy Environ Sci 2011;4:1065-86.

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light photocatalysis in nitrogen-doped titanium oxides. Sci 2001;293:269-71.

Sun L, Cai J, Wu Q, Huang P, Su Y, Lin C. N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities. Electrochim Acta 2013;108:525-31.

Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, MacManus-Driscoll JL. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Erschienen: Nanotechnol 2010;2:1-6.

Zhao K, Wu Z, Tang R, Jiang Y. Preparation of highly visible-light photocatalytic active N-Doped TiO2 microcuboids. J Korean Chem Soc 2013;57:489-92.

Cheng B, Le Y, Yu J. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J Hazard Mater 2010;177:971-7.

Zhao X, Guo L, Qu J. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem Eng J 2014;239:53–9.

Wilhelm P, Stephan D. Photodegradation of rhodamine B in Aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A: Chem 2007;185:19-25.

Leng WH, Zhu WC, Ni J, Zhang Z, Zhang JQ, Cao CN. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl Catal: A 2006;300:24-5.

Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts 2013;3:189-218.

Tian M, Wu G, Adams B, Wen J, Chen A. Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO2 Electrodes. J Phys Chem C 2008;112:825-31.

Published

01-06-2015

How to Cite

Maulidiyah, M. Nurdin, D. Wibowo, and A. Sani. “NANO TUBE TITANIUM DIOXIDE / TITANIUM ELECTRODE FABRICATION WITH NITROGEN AND SILVER METAL DOPED ANODIZING METHOD: PERFORMANCE TEST OF ORGANIC COMPOUND RHODAMINE B DEGRADATION”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 6, June 2015, pp. 141-6, https://journals.innovareacademics.in/index.php/ijpps/article/view/5508.

Issue

Section

Original Article(s)

Most read articles by the same author(s)