NANO TUBE TITANIUM DIOXIDE / TITANIUM ELECTRODE FABRICATION WITH NITROGEN AND SILVER METAL DOPED ANODIZING METHOD: PERFORMANCE TEST OF ORGANIC COMPOUND RHODAMINE B DEGRADATION
Keywords:
TiO2Ti, Silver (Ag), Nitrogen (N), Rhodamine B, Anodizing, PhotoelectrocatalyticAbstract
Objective: The objective of this study was to prepare the titanium dioxide (TiO2) by using Anodizing method that was subsequently coated with nitrogen (N) and silver metal (Ag) in the TiO2/Ti matrix.
Methods: The preparation of N-TiO2/Ti using the sol-gel method was carried out by adding 3 ml of 5M NH4Cl as the source of nitrogen with a dip-coating technique. Ag@TiO2/Ti was prepared using an electrodeposition method with 0.1M AgNO3 solution in 0.5% EDTA as the source of Ag metal dopants for one minute.
Results: Photocurrent response test using the Linear Sweep Voltametry (LSV) showed that the TiO2/Ti electrode becomes active when irradiated UV light, while the addition of dopants makes nonmetal (N-TiO2/Ti) and metal (Ag@TiO2/Ti) active in visible or UV light irradiation. The analysis of Rhodamine B organic compound degradation by using UV-Vis spectrophotometer showed that the TiO2/Ti electrode was active in UV light irradiation at degradation rate 0.09 min-1, while N-TiO2/Ti and Ag@TiO2/Ti were active in visible light irradiation at degradation rate 0.0372 min-1 and 0.0732 min-1, respectively.
Conclusion: The photoelectrocatalytic activity test to degrade organic compound of Rhodamine B showed that N-TiO2/Ti and Ag@TiO2/Ti electrode were able to be active in visible light.
Downloads
References
Daghrir R, Drogui P, Robert D. Photoelectrocataltyic technologies for environmental applications. J Photochem Photobiol: A 2012;238:41-52.
Merck Index. Chemistry Constant Companion, Now with a New Additon. Ed 14Th. 1410, 1411, Merck & Co Inc, Whitehouse Station; 2006.
Safni, Maizatisna, Zulfarman, Sakai T. Degradasi zat warna naphtol blue black secara sonolisis dan fotolisis dengan penambahan TiO2-Anatase. J Kris Kim 2007;1:1.
Guaraldo TT, Pulcinelli SH, Zanoni MVB. Influence of particle size on the photoactivity of Ti/TiO2 thin film electrodes, and enhanced photoelectrocatalytic degradation of indigo carmine dye. J Photochem Photobiol: A 2011;217:259-66.
Mahoney L, Koodali RT. Modified TiO2 material with the approach to use a molecule template (surfactants). Materials 2014;7:2697-746.
Nurdin M. Preparation, Characterization and Photoelectrocatalytic activity of Cu@N-TiO2/Ti Thin Film Electrode. Int J Pharma Bio Sci 2014;5:360-9.
Ruslan Abd, Wahid Wahab, Nafie NL, Nurdin M. Synthesis and characterization of electrodes N-TiO2/Ti for chemical oxygen demand sensor with visible light response flow. Int J Sci Technol Res 2013;2:220-4.
Nurdin M, Wibowo W, Supriyono, Febrian MB, Surahman H, Krisnandi YK, et al. Pengembangan metode baru penentuan chemical oxygen demand (COD) Berbasis sel fotoelektrokimia: Karakterisasi elektroda kerja lapis tipis TiO2/ITO. J Makara Sains 2009;13:1-8.
Ye S, Shen S, Ye L, Song X, Luo S. Enhancement of the photoelectrocatalytic activity of TiO2/ACF for ethylene removal by Ag nanoparticles synthesized by γ-rayradiolysis. Mater Sci Semicond Process 2014;27:397-403.
Zhang J, Zhou B, Zheng Q, Li J, Bai J, Liu Y, Cai W. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array. Water Res 2009;43:1986-92.
Yogi C, Kojima K, Wada N, Tokumoto H, Takai T, Mizoguchi, et al. Photocatalytic degradation of methylene blue by TiO2 Film and Au particles-TiO2 composite film. Thin Solid Films 2008;516:5881-4.
Wang DB, Yu F, Zhou C, Wang W, Liu. Synthesis and characterization of anatase TiO2 nano tubes and their use in dye-sensitized solar cells. Materials Chem Phys 2008;113:602–6.
Whang H, Huang M, Hseih, J Chen. Laser induced silver nanoparticles on Titanium di oxide for photocatalytic degradation of methylene blue. Int J Mol Sci 2009;10:4707-18.
Aditi R, Gandhe, Julio, B Fernandes. A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J Solid State Chem 2005;178:2953–7.
Zaleska A. Doped-TiO2: A Review. Recent Pat Eng 2008;2(3):157-64.
Nurdin M, Maulidiyah. Fabrication of TiO2/Ti Nanotube electrode by anodizing method and its application on photoelectrocatalytic system. Int J Sci Technol Res 2014;3:122-6.
Konjari RS, Jacob AA, Jayanthi S, Ramalingam C, Ethiraj SA. Invenstigation of biogenic silver nanoparticles green synthesized from carica papaya. Int J Pharm Pharm Sci 2015;7(3):107-10.
Quan X, Ruan X, Zhao H, Chen S, Zhao Y. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Polution 2007;147:409-14.
Ou H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Sep Purif Technol 2007;58:179-91.
Bai J, Zhou B, Li L, Liu Y, Zheng Q, Shao J, et al. The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J Mater Sci 2008;43:1880-4.
El ruby Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light response photoanode, a review. Energy Environ Sci 2011;4:1065-86.
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light photocatalysis in nitrogen-doped titanium oxides. Sci 2001;293:269-71.
Sun L, Cai J, Wu Q, Huang P, Su Y, Lin C. N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities. Electrochim Acta 2013;108:525-31.
Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, MacManus-Driscoll JL. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Erschienen: Nanotechnol 2010;2:1-6.
Zhao K, Wu Z, Tang R, Jiang Y. Preparation of highly visible-light photocatalytic active N-Doped TiO2 microcuboids. J Korean Chem Soc 2013;57:489-92.
Cheng B, Le Y, Yu J. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J Hazard Mater 2010;177:971-7.
Zhao X, Guo L, Qu J. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem Eng J 2014;239:53–9.
Wilhelm P, Stephan D. Photodegradation of rhodamine B in Aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A: Chem 2007;185:19-25.
Leng WH, Zhu WC, Ni J, Zhang Z, Zhang JQ, Cao CN. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl Catal: A 2006;300:24-5.
Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts 2013;3:189-218.
Tian M, Wu G, Adams B, Wen J, Chen A. Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO2 Electrodes. J Phys Chem C 2008;112:825-31.