ANTIHYPERGLYCEMIC AND ANTIDYSLIPIDEMIC POTENTIAL OF IPOMOEA BATATAS LEAVES IN VALIDATED DIABETIC ANIMAL MODELS
Keywords:
Antidiabetic activity, Antidyslipidemic activity, Glucose uptake, STZ-induced rats, Neonatal STZ induced diabetic rats, Ipomoea batatas leavesAbstract
Objective: The present study was undertaken to investigate the antidiabetic potential of the leaves of Ipomoea batatas.
Methods: The crude powder, 95% ethanolic, 50% ethanolic and aqueous extracts of Ipomoea batatas leaves were administered to normoglycemic and streptozotocin (STZ)-induced diabetic rats in a single dose study. The chloroform, butanol and aqueous fractions of aqueous extract were investigated for their antihyperglycemic on STZ-induced diabetic rats. Multiple dose study of an aqueous fraction was also done in STZ and neonatal STZ-induced diabetic rats. Further, the aqueous fraction was measured against the alpha glucosidase and aldose reductase enzymes, and glucose uptake in L6 myotubes.
Results: The aqueous extract showed significant lowering of postprandial hyperglycemia of post sucrose loaded normal rats and significantly declined the blood glucose level of STZ-induced diabetic rats. The aqueous fraction at a single dose of 100 mg/kg b. w in comparison with chloroform and butanol fractions significantly lowered the blood glucose level of STZ-induced diabetic rats. The aqueous fraction in a multiple dose study were found to significantly improved the percent glycated hemoglobin (%HbA1c), fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, lipid profile, liver and kidney parameters in STZ-induced diabetic rats. Marked improvement in OGTT and serum insulin levels was also found in neonatal STZ-induced diabetic rats. In vitro study, the aqueous fraction of I. batatas increased glucose uptake in L6 myotubes and inhibits the α-glucosidase and aldose reductase enzymes.
Conclusion: The present study demonstrated the significant antidiabetic activity of the I. batatas leaves by promoting insulin secretion, alpha glucosidase and aldose reductase enzyme inhibition.
Â
Downloads
References
American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2014;37 Suppl 1:S14-80.
Scott AR, Tattersall RB. Alpha glucosidase inhibition in the treatment of non-insulin-dependent diabetes mellitus. Diabetic Med 1988;5(1):42-6.
Truong V, Avula RY. Sweet potato purees and powders for functional food ingredients. In: Ray RC, Tomlins KI. Eds. Sweet Potato: Post Harvest Aspects in Food. Nova Science Publishers: Inc. New York, USA; 2010. p. 117-61.
Ludvik B, Neuffer B, Pacini G. Efficacy of Ipomoea batatas (Caiapo) on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care 2004;27(2):436-40.
Meira M, da Silva EP, David JM, David JP. Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Rev Bras Farmacogn 2012;22(3):128-9.
Niwa A, Tajiri T, Higashino H. Ipomoea batatas and Agaricus blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin_induced diabetic rats. J Clin Biochem Nutr 2011;48(3):194–02.
Royhan A, Susilowati R, Sunarti. Effects of white-skinned sweet potato (Ipomoea batatas L.) on pancreatic beta cells and insulin expression in streptozotocin induced diabetic rats. Majalah Kesehatan Pharm Med 2009;1(2):45-9.
Kusano S, Abe H, Okada A. Study of antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.); comparison of normal and streptozotocin induced diabetic rats and hereditary diabetic mice. Nippon Nogeikagaku Kaishi 1998;72:1045-52.
Kusano S, Abe H. Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zucker fatty rat. Biol Pharm Bull 2000;23(1):23–6.
Li F, Li Qingwang, Gao D, Peng Y. The optimal extraction parameters and anti-diabetic activity of flavonoids from Ipomoea batatas Leaf. Afr J Tradit Complementary Altern Med 2009;6(2):195-202.
Ludvik B, Waldhäusl W, Prager R, Kautzky-Willer A, Pacini G. Mode of action of Ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism 2003;52(7):875-80.
Srivsatava R, Srivastava PS, Jaiswal N, Mishra A, Maurya R, Srivastava KA. Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models. Med Chem Res 2010;20(9):1656-66.
Srivastava KA, Tiwari P, Srivastava PS, Srivastava R, Mishra A, Rahuja N, et al. Antihyperglycaemic and antidyslipidemic activities in ethyl acetate fraction of fruits of marine mangrove xylocarpus moluccensis. Int J Pharm Pharm Sci 2014;6(1):809-26.
Andrade-Cetto, Revilla-Monsalve C, Wiedenfeld H. Hypoglycemic effect of Tournefortia hirsutissima L., on n-streptozotocin diabetic rats. J Ethnopharmacol 2007;112(1):96-100.
Pistia-Brueggeman G, Hollingsworth RI. A preparation and screening strategy for glucosidase inhibitors. Tetrahedron 2001;57:8773-8.
Bhatia V, Srivastava SP, Srivastava R, Mishra A, Narender T, Maurya R, Srivastava KA. Antihyperglycaemic and aldose reductase inhibitory potential of Acacia catechu hard wood and Tectona grandis leaves. Med Chem Res 2011;20(9):1724-31.
Lowry HO, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193(1):265–75.
Hayman S, Kinoshita JH. Isolation and properties of lens Aldose reductase. J Biol Chem 1965;240:877–82.
Kajimoto O, Yamamoto T, Kajimoto Y, Takahashi R, Tamura H, Aki O. Long-term administration of white skinned sweet potato-containing food for drug-free individuals with NIDDM. Health Natr Food Res 1999;2:1–12.
Kusano S, Abe H, Tamura H. Isolation of antidiabetic components from white-skinned sweet potato. Biosci Biotechnol Biochem 2001;65(1):109-14.
Lako J, Trenerry VC, Wahlqvist M, Wattanapenpaiboon N, Sotheeswaran S, Premier R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 2007;101(4):1727-41.
Brunetti L, Menghini L, Orlando G, Recinella L, Leone S, Epifano F, et al. Antioxidant effects of garlic in young and aged rat brain in vitro. J Med Food 2009;12(5):1166-9.
Durackova Z. Some current insights into oxidative stress. Physiol Res 2010;59(4):459-69.
Miyazaki Y, Kusano S, Doi H, Aki O. Effects on immune response of antidiabetic ingredients from white skinned sweet potato (Ipomoea batatas L.). Nutr 2005;21(3):358–62.
Liao WC, Lai YC, Yuan MC, Hsu YL, Chan CF. Antioxidative activity of water extract of sweet potato leaves in Taiwan. Food Chem 2011;127(3):1224-8.
Lee SH, Kang SM, Ko SC, Kang MC, Jeon YJ. Octaphlorethol A, a novel phenolic compound isolated from Ishige foliacea, protects against streptozotocin-induced pancreatic β cell damage by reducing oxidative stress and apoptosis. Food Chem Toxicol 2013;59:643-9.
Shih CC, Chen MH, Lin CH. Validation of the antidiabetic and hypolipidemic effects of clitocybe nuda by assessment of glucose transporter 4 and Gluconeogenesis and AMPK phosphorylation in streptozotocin-induced mice. Evidence-Based Complementary Altern Med 2014. DOI: 10.1155/2014/705636. [Article In Press].
Rathinam A, Pari L, Chandramohan R, Sheikh BA. Histopathological findings of the pancreas, liver, and carbohydrate metabolizing enzymes in STZ-induced diabetic rats improved by administration of myrtenal. J Physiol Biochem 2014;70(4):935-46.
Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacogn Res 2010;2(3):195-201.
Ezeja MI, Anaga AO, Asuzu IU. Antidiabetic, antilipidemic, and antioxidant activities of Gouania longipetala methanol leaf extract in alloxan-induced diabetic rats. Pharm Biol 2015;53(4):605-14.
Daisy P, Vargese L, Priya EC. Comparative studies on the different leaf extracts of Elephantopus scaber L. on STZ-induced diabetic rats. Eur J Sci Res 2009;32(3):304-13.
Mahalingam G, Kannabiran K. 2-Hydroxy 4-methoxy benzoic acid isolated from roots of Hemidesmus indicus ameliorates liver, kidney and pancreas injury due to streptozotocin-induced diabetes in rats. Indian J Exp Biol 2010;48(2):159-64.
Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int 2014. doi: 10.1155/2014/920857. [Article in Press]
Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL. Neonatal streptozotocin-induced rat model of Type 2 diabetes mellitus: a glance. Indian J Pharmacol 2009;36(4):217-21.
Portha B, Giroix MH, Serradas P, Morin L, Saulnier C, Bailbe D. Glucose refractoriness of pancreatic beta-cells in rat models of non-insulin dependent diabetes. Diabete Metab 1994; 20(2):108-15.
Fernandez-Alvarez J, Barbera A, Nadal B, Barcelo-Batllori S, Piquer S, Claret M, et al. Stable and functional regeneration of pancreatic beta-cell population in n-STZ rats treated with tungstate. Diabetologia 2004;47(3):470-7.
Bonner-Weir S, Trent DF, Weir GC. Responses of neonatal rat islets to streptozotocin; Limited B cell regeneration and hyperglycemia. Diabetes 1981;30(1):64-9.
Tiwari VK, Mishra RC, Sharma A, Tripathi RP. Carbohydrate based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini Rev Med Chem 2012;12(14):1497-519.
Kalra S. Alpha glucosidase inhibitors, Recent advances in endocrinology. J Pak Med Assoc 2014;64(4):474-6.
Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, et al. Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition 2011;27(11-12):1161-7.
Kinoshita JH. A thirty-year journey in the polyol pathway. Exp Eye Res 1990;50(6):567–73.
Dodda D, Ciddi V. Plants used in the management of diabetic complications. Indian J Pharm Sci 2014;76(2):97-106.
Bhatnagar A, Srivastava SK. Aldose reductase: congenial and injurious profiles of an enzymatic enzyme. Biochem Med Metab Biol 1992;48(2):91-121.
Pfeifer MA, Schumer MP, Gelber DA. Aldose reductase inhibitors: the end of an era or the need for different trial designs? Diabetes 1997;46:S82-9.
Koivisto UM, Martinez-Valdez H, Bilan PJ, Burdett E, Ramlal T, Klip A. Differential regulation of the GLUT1 and GLUT4 glucose transport systems by glucose and insulin in L6 muscle cells in culture. J Biol Chem 1991;266(4):2615-21.
Ciaraldi TP, Huber-Khudsen K, Hickman M, Olefsky JM. Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism 1995;44(8):976-81.
Yonemitsu S, Nishimura H, Shintani M, Inoue R, Yamamoto Y, Masuzaki H, et al. Troglitazone induces GLUT4 translocation in L6 myotubes. Diabetes 2001;50(5):1093-101.
Abdel-Hassan IA, Abdel-Barry JA, Tariq Mohammeda S. The hypoglycaemic and antihyperglycaemic effect of citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J Ethnopharmacol 2000;71(1-2):325-30.
Ijaola TO, Osunkiyesi AA, Taiwo AA, Oseni OA, LanreIyanda YA, Ajayi JO, et al. Antidiabetic effect of Ipomoea batatas in normal and alloxan-induced diabetic rats. IOSR-JAC 2014;7(5):16-25.