• Stevanus Hiendrawan Dexa Laboratories of Biomolecular Sciences
  • Bambang Veriansyah Dexa Laboratories of Biomolecular Sciences
  • Edward Widjojokusumo Dexa Laboratories of Biomolecular Sciences
  • Sundani Nurono Soewandhi Bandung Institute of Technology
  • Saleh Wikarsa Bandung Institute of Technology
  • Raymond R. Tjandrawinata Dexa Laboratories of Biomolecular Sciences, Cikarang 17550, West Java, Indonesia


Paracetamol, Dipicolinic acid, Cocrystal, Supercritical antisolvent, Tabletability, Micronization


Objective: This present study aims to produce cocrystal of paracetamol (PCA)-dipicolinic acid (DPA) using supercritical antisolvent (SAS) cocrystallization process in order to improve tabletability profile of PCA.

Methods: The PCA-DPA cocrystal prepared by SAS cocrystallization were compared to those produced using a traditional solvent evaporation. The cocrystals produced were characterized using Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Polarized Light Microscopy (PLM), Fourier Transform Infrared (FTIR) spectroscopy, particle size analysis, Scanning Electron Microscopy (SEM) and High Performance Liquid Chromatography (HPLC). Analysis of flowability, drug content, solubility, dissolution, stability and powder compaction were performed to evaluate the cocrystals.

Results: Cocrystal particles with mean diameter of 4.18 µm were produced from SAS process, smaller than those produced by traditional solvent evaporation method (mean diameter of 64.93 μm). The PCA-DPA cocrystal from SAS process showed an enhanced dissolution rate by 2.45 times compared to PCA, higher than cocrystal from traditional solvent evaporation (enhanced dissolution rate by 1.72 times compared to PCA). Tabletability study revealed superior tableting performance of both cocrystals compared to PCA.

Conclusion: This study showed the utility of PCA-DPA cocrystal to improve mechanical properties of PCA while also demonstrating that simultaneous micronization and cocrystallization process can be obtained using SAS process.



Download data is not yet available.


Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des 2013;13:4295-304.

Gao Y, Gao J, Liu Z, Kan H, Zu H, Sun W, et al. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J Pharm 2012;438:327-35.

Wang ZZ, Chen JM, Lu TB. Enhancing the hygroscopic stability of S-Oxiracetam via pharmaceutical cocrystal. Cryst Growth Des 2012;12:4562-6.

Sanphui P, Kumar SS, Nangia A. Pharmaceutical cocrystals of niclosamide. Cryst Growth Des 2012;12:4588-99.

Karki S, Friscic T, Fabian L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater 2009;21:3905-9.

Cheney ML, Shan N, Healey ER, Hanna M, Wojtas L, Zaworotko MJ, et al. Effects of crystal form on solubility and pharmacokinetics: a crystal engineering case study of lamotrigine. Cryst Growth Des 2010;10:394-405.

Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007;4:301-9.

Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 2009;9:2950-67.

Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top Curr Chem 2005;254:41-70.

Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta 2014;575:313-21.

Fucke K, Myz SA, Shakhtshneider TP, Boldyreva EV, Griesser UJ. How good are the crystallisation methods for co-crystals? A comparative study of piroxicam. New J Chem 2012;36:1969-77.

Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystalization. Cryst Growth Des 2008;8:3032-7.

Chen JM, Wang ZZ, Wu CB, Li S, Lu TB. Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm 2012;14:6221-9.

Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 2008;8:1697-712.

Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res 2013;30:70-80.

Moradiya H, Islam MT, Woollam GR, Slipper IJ, Halsey S, Snowden MJ, et al. Continuous cocrystallization for dissolution rate optimization of a poorly water soluble drug. Cryst Growth Des 2014;14:189-98.

Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des 2010;10:3302-5.

Hiendrawan S, Veriansyah B, Tjandrawinata RR. Micronization of fenofibrate by rapid expansion of supercritical solution. J Ind Eng Chem 2014;20:54-60.

Vieira de Melo SAB, Danh LT, Mammucari R, Foster NR. Dense CO2 antisolvent precipitation of levothyroxine sodium: a comparative study of GAS and ARISE techniques based on morphology and particle size distributions. J Supercrit Fluids 2014;93:112-20.

Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG. Formation of indomethacin-saccharin cocrystals using supercritical fluids technology. Eur J Pharm Sci 2009;38:9-17.

Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010;53:156-64.

Padrela L, Rodrigues MA, Tiago J, Velaga SP, Matos HA, de Azevedo EG. Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. J Supercrit Fluids 2014;86:129-36.

Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012;13:1396-406.

Ober CA, Montgomery SE, Gupta RB. Formation of itraconazole/l-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol 2013;236:122-31.

Neurohr C, Revelli AL, Billot P, Marchivie M, Lecomte S, Laugier S, et al. Naproxen-nicotinamide cocrystals produced by CO2 antisolvent. J Supercrit Fluids 2013;83:78-85.

Mullers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res 2015;32:702-13.

Rossmann M, Braeuer A, Leipertz A, Schluecker E. Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. J Supercrit Fluids 2013;82:230-7.

Li G, Chu J, Song ES, Row KH, Lee KH, Lee YW. Crystallization of acetaminophen micro-particle using supercritical carbon dioxide. Korean J Chem Eng 2006;23:482-7.

Tabernero A, del Valle EMM, Galan MA. Precipitation of tretinoin and acetaminophen with solution enhanced dispersion by supercritical fluids (SEDS). Powder Technol 2012;217:177-88.

Srirambhatla VK, Kraft A, Watt S, Powell AV. Crystal design approaches for the synthesis of paracetamol co-crystals. Cryst Growth Des 2012;12:4870-9.

Andre V, Fatima M, da Piedad M, Duarte MT. Revisiting paracetamol in a quest for new co-crystals. CrystEngComm 2012;14:5005-14.

Sander JRG, Bucar DK, Henry RF, Baltrusaitis J, Zhang GGZ, Macgillivray LR. A red zwitterionic co-crystal of acetaminophen and 2,4-pyridinecarboxylic acid. J Pharm Sci 2010;99:3676-83.

United States Pharmacopeial Convention, Inc., The United States Pharmacopeia. 31st ed. Rockville: United States Pharmacopeial Convention, Inc; 2008.

Kim MS, Lee S, Park JS, Woo JS, Hwang SJ. Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. Powder Technol 2007;177:64-70.

Lu E, Hornedo NR, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm 2008;10:665-8.

Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystallization and simultaneous agglomeration using hot melt extrusion. Pharm Res 2010;27:2725-33.

Manin AN, Voronin AP, Drozd KV, Manin NG, Brandl AB, Perlovich GL. Cocrystal screening of hydroxybenzamides with benzoic acid derivatives: a comparative study of thermal and solution-based methods. Eur J Pharm Sci 2014;65:56-64.

Mulye SP, Jamadar SA, Karekar PS, Pore YV, Dhawale SC. Improvement in physicochemical properties of ezetimibe using a crystal engineering technique. Powder Technol 2012;222:131-8.

Manin AN, Voronin AP, Manin NG, Vener MV, Shishkina AV, Lermontov AS. Salicylamide cocrystals: screening, crystal structure, sublimation thermodynamics, dissolution, and solid-state DFT calculations. J Phys Chem B 2014;118:6803-14.

Garekani HA, Ford JL, Rubinstein MH, Siahboomi ARR. Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol. Int J Pharm 1999;187:77-89.

Chadha R, Saini A, Jain DS, Venugopalan P. Preparation and solid-state characterization of three novel multicomponent solid forms of oxcarbazepine: improvement in solubility through saccharin cocrystal. Cryst Growth Des 2012;12:4211-24.

Moynihan HA, Hare IPO. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int J Pharm 2002;247:179-85.

Wang L, Tan B, Zhang H, Deng Z. Pharmaceutical cocrystals of diflunisal with nicotinamide or isonicotinamide. Org Process Res Dev 2013;17:1413-8.

Chow SF, Chen M, Shi L, Chow AHL, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res 2012;29:1854-65.

Brittain HG. Vibrational spectroscopic studies of cocrystals and salts.3. cocrystal products formed by benzenecarboxylic acids and their sodium salts. Cryst Growth Des 2010;10:1990-2003.

Kaialy W, Larhrib H, Chikwanha B, Shojaee S, Nokhodchi A. An approach to engineer paracetamol crystals by antisolvent crystallization technique in presence of various additives for direct compression. Int J Pharm 2014;464:53-64.

Renuka, Singh SK, Gulati M, Kaur I. Characterization of solid state forms of glipizide. Powder Technol 2014;264:365-76.

Rossmann M, Braeuer A, Dowy S, Gallinger TG, Leipertz A, Schluecker E. Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. J Supercrit Fluids 2012;66:350-8.

Perumalla SR, Shi L, Sun CC. Ionized form of acetaminophen with improved compaction properties. Cryst Eng Comm 2012;14:2389-90.

Chattoraj S, Shi L, Chen M, Alhalaweh A, Velaga S, Sun CC. Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin. Cryst Growth Des 2014;14:3864-74.

Sun C, Grant DJW. Effects of initial particle size on the tableting properties of L-lysine monohydrochloride dihydrate powder. Int J Pharm 2001;251:221-8.

Garekani HA, Sadeghi F, Badiee A, Mostafa SA, Siahboomi ARR. Crystal habit modifications of ibuprofen and their physicomechanical characteristics. Drug Dev Ind Pharm 2001;27:803-9.

Nokhodchi A, Bolourtchian N, Dinarvand R. Crystal modification of phenytoin using different solvents and crystallization conditions. Int J Pharm 2003;250:85-97.

Aher S, Dhumal R, Mahadik K, Ketolainen J, Paradkar A. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal. Pharm Dev Technol 2013;18:55-60.

Rasenack N, Muller BW. Crystal habit and tableting behavior. Int J Pharm 2002;244:45-57.

Hiendrawan S, Veriansyah B, Tjandrawinata RR. A bottom-up process approach for micronization of ibuprofen. J Chem Pharm Res 2015;7:708-15.



How to Cite

Hiendrawan, S., B. Veriansyah, E. Widjojokusumo, S. N. Soewandhi, S. Wikarsa, and R. R. Tjandrawinata. “SIMULTANEOUS COCRYSTALLIZATION AND MICRONIZATION OF PARACETAMOL-DIPICOLINIC ACID COCRYSTAL BY SUPERCRITICAL ANTISOLVENT (SAS)”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 2, Feb. 2016, pp. 89-98,



Original Article(s)

Most read articles by the same author(s)