DEVELOPMENT OF NANOSTRUCTURED LIPID CARRIER FORMULATION CONTAINING OF RETINYL PALMITATE
Abstract
Objective: The purpose of this research is to develop a Nanostructure Lipid Carrier (NLC) formulation containing of Retinyl Palmitate.
Methods: Preparation of NLC was carried out by ultrasonication method. The formulas of NLC were developed by using virgin coconut oil and oleic acid as a liquid lipids, cetyl palmitate, and stearic acid as solid lipids, Tween 80 and Poloxamer as a surfactant and glycerine as co-surfactant. Characterization of NLC consisted of visual appearance, morphology, particle size, polydispersity index (PI), and physical stability test using freeze-thaw, centrifugation, and accelerate stability test method.
Results: Obtained NLC revealed a good characterization with the formulation of 7.2% of cetyl palmitate, 4.8% of oleic acid, 10% of Tween 80, 10% of glycerin, and 2% of retinyl palmitate. This NLC has a pale yellow appearance, globule size of 258±15.85 nm; and a polydispersity index of 0.31±0.09. It was also physically stable after centrifuged at 13,000 rpm for 30 min, during 4 cycles of freeze-thaw and storage at room temperature for 28 d. During storage for 28 d, retinyl palmitate in NLC had been degraded only about 15% in comparison with macroemulsion destroyed almost 50% of retinyl palmitate in the same time.
Conclusion: NLC formulations with 7.2% cetyl palmitate, 4.8% of oleic acid, 10% of Tween 80, 10% of glycerol, and 2% of retinyl palmitate is the most optimal formula that showed a good characteristic. Stability study revealed that NLC provided better stability than macroemulsion.
Keywords: Retinyl palmitate, NLC, Ultrasonication MethodeÂ
Downloads
References
Üner M. Preparation, characterization and physicochemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 2006;61:375–86.
Beck R, Guterres S, Pohlmann A. Nanocosmetics and Nanomedicines: New Approaches for Skin Care, Springer-Verlag, Berlin Heidelberg; 2011.
Mṻller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121–8.
Mṻller RH, Runge SH. Solid lipid nanoparticles (SLN1) for controlled drug delivery. In: Benita S, ed. The submicron emulsion in drug targeting and delivery. Harwood Academic Publishers, the Netherlands; 1998. p. 219–34.
Gasco MR. Solid lipid nanospheres from warm micro-emulsions. Pharm Technol Eur 1997;9:52–8.
Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002;23:2283–94.
KržiÄ M, Sentjurc M, Kristl J. Improved skin oxygenation after benzyl nicotinate application in different carriers as measured by EPR oximetry in vivo. J Controlled Release 2001;70:203–11.
Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 2003;56:189–96.
Moyano MA, Segall A. Vitamin a palmitate and α-lipoic acid stability in o/w emulsions for cosmetic application. J Cosmet Sci 2011;62:405-15.
Froix M, Pukshansky M, Nacht S. Retinoid formulation in porous microspheres for reduced irritation and enhanced stability. United States Patent Application; 1998.
Mauludin R, Mohamad SFB, Suciati T. Formulation and characterization of ascorbyl palmitate are loaded o/w microemulsion. Int J Pharm Pharm Sci 2014;6:294-8.
Asean Guideline on Stability Study of Drug Product. 5th Draft. version 6.0; 2013. p. 1-40.
Bonacucina G, Marco C, Giovanna M, Gianfabio G, Giovanni FP. A thermosensitive self-assembling block copolymer as drug delivery systems. Polymers 2011;3:779-811.
Shekhawat PB. Preparation and evaluation of clotrimazole nanostructured lipid carrier for topical delivery. Int J Pharma Bio Sci 2013;4:407-16.
Baumann L, Saghari S, Weisberg E. Cosmetic dermatology principles, and practice. 2nd Ed. The McGraw-Hill Companies. Inc. United States; 2009.
Ahmed K, Li Y, McClements D, Xao H. Nanoemulsion and emulsion-based delivery system for curcumin: encapsulation and release properties. Food Chem 2012;132:799-807.
Andre V, Willenbcher N, Debus H, Börger L, Fernandez P, Frenchen T, et al. Prediction of emulsion stability: facts and myth. In: Cosmetics and Toiletries Manufacture Worldwide, Aston Publishing Group. Birkenhead. North Shore City; 1994. p. 1-7.