IN SILICO STUDY OF SIRT1 ACTIVATORS USING A MOLECULAR DYNAMIC APPROACH

Authors

  • AZMINAH AZMINAH Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.
  • MAKSUM RADJI Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.
  • ABDUL MUN’IM Laboratory of Pharmacognosy-Phytochemisty, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.
  • REZI RIADHI SYAHDI Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.
  • ARRY YANUAR Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.

DOI:

https://doi.org/10.22159/ijap.2019.v11s1.19266

Keywords:

SIRT1 activator, Molecular docking, Molecular dynamic, Molecular mechanicPoisson Boltzmann (generalized born) surface area

Abstract

Objective: The importance of SIRT1 activator’s role in antidiabetic and anti-aging therapies is widely demonstrated. Drug discovery and development
are time consuming. Drug design can be performed in silico using molecular dynamic approaches to accelerate and facilitate identification of the best
compound candidates and their physicochemical characteristics and hit-to-lead selection.
Methods: In silico study of SIRT1 activator for complexes using of Protein Data Bank (PDB) IDs 4ZZI, 4ZZJ 4ZZH, and 5BTR and 4TO ligand. Ligand–
receptor interactions and bond energies were determined using molecular docking with the AutoDock4Zn program. Then, the complex with the
best bond energy was identified using a simulation of the molecular dynamics (50 ns) using the Amber program, and values for root mean square
deviation, root mean square fluctuation, and bond energy were determined using the Molecular Mechanic–Poisson Boltzmann (Generalized Born)
surface area (MM-PB[GB]SA) calculation.
Results: Interaction analysis between activator ligand (4TO) and the SIRT1 receptor (PDB IDs 4ZZJ and 5BTR) revealed the ligand’s selectivity for
hydrophobic interaction at Leu206, Ile223, Ile227, and hydrophilic interaction at Asn226, Glu230. Hydrogen bond interactions between Glu230 and Arg234
(allosteric region) with Arg446, Val459, His473, and Asp475 (catalytic region) brought them close to the bounding substrate area. Bond energy values
obtained using the MM-GB(PB)SA calculation showed 4TO interaction with 4ZZJ (MMGBSA ΔG, −31.4729–−26.6756; MMPBSA ΔG, −32.6292–−28.486].
The bond energy value of the 4TO interaction with 5BTR showed MMGBSA ΔG = −40.6255–−30.0653 and MMPBSA ΔG = −34.6713–−25.9951.
Conclusions: These findings provide important information on the target interaction of the bonds to the more selective SIRT1 activator useful for
drug discovery and development.

Downloads

Download data is not yet available.

References

1. Aditya R, Kiran AR, Varma DS, Vemuri R, Gundamaraju R. A review
on SIRtuins in diabetes. Curr Pharm Des 2017;23:2299-307.
2. Kitada M, Koya D. SIRT1 in Type 2 diabetes: Mechanisms and
therapeutic potential. Diabetes Metab J 2013;37:315-25.
3. Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family’s role in
aging and age-associated pathologies. J Clin Invest 2013;123:973-9.
4. Kume S, Kitada M, Kanasaki K, Maegawa H, Koya D. Anti-aging
molecule, sirt1: A novel therapeutic target for diabetic nephropathy.
Arch Pharm Res 2013;36:230-6.
5. Kitada M, Ogura Y, Koya D. The protective role of sirt1 in vascular
tissue: Its relationship to vascular aging and atherosclerosis. Aging
(Albany NY) 2016;8:2290-307.
6. Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev 2015;115:
2350-75.
7. Bheda P, Jing H, Wolberger C, Lin H. The substrate specificity of
sirtuins. Annu Rev Biochem 2016;85:405-29.
8. Sinclair DA, Guarente L. Small-molecule allosteric activators of
sirtuins. Annu Rev Pharmacol Toxicol 2014;54:363-80.
9. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, et al.
Evidence for a common mechanism of SIRT1 regulation by allosteric
activators. Science 2013;339:1216-9.
10. Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Selectivity hot-spots
of sirtuin catalytic cores. Mol Biosyst 2015;11:2263-72.
11. Dai H, Case AW, Riera TV, Considine T, Lee JE, Hamuro Y, et al.
Crystallographic structure of a small molecule SIRT1 activator-enzyme
complex. Nat Commun 2015;6:7645.
12. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, et al. Structural basis
for allosteric, substrate-dependent stimulation of SIRT1 activity by
resveratrol. Genes Dev 2015;29:1316-25.
13. Bonkowski MS, Sinclair DA. Slowing ageing by design: The rise
of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol
2016;17:679-90.
14. Yanuar A, Azminah EY, Andika EY, Erlina L, Syahdi RR. In silico
approach to finding new active compounds from histone deacetylase
(HDAC) family. Curr Pharm Des 2016;22:3488-97.
15. Sacconnay L, Carrupt PA, Nurisso A. Human sirtuins: Structures and
flexibility. J Struct Biol 2016;196:534-42.
16. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S,
et al. The RCSB protein data bank: New resources for research and
education. Nucleic Acids Res 2013;41:D475-82.
17. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J,
Duke RE, R. et al. AMBER 12; 2012. Available from: http://www.
ambermd.org.
18. Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): An
improved autoDock force field for small-molecule docking to zinc
metalloproteins. J Chem Inf Model 2014;54:2371-9.
19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS,
et al. AutoDock4 and autoDockTools4: Automated docking with
selective receptor flexibility. J Comput Chem 2009;30:2785-91.
20. Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from
protein-bound ligands and their use as virtual screening filters. J Chem
Inf Model 2005;45:160-9.
21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM,
Meng EC, et al. UCSF Chimera--a visualization system for exploratory
research and analysis. J Comput Chem 2004;25:1605-12.
22. Skjaerven L, Strahm Y, Petersen K, Walker R. Course in Applied
Structural Bioinformatics : Amber Peptide Tutorial. 2010. Available from:
http://www.ii.uib.no/~slars/bioinfocourse/PDFs/amber_peptide_tut.pdf.
23. Miller BR, Mcgee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE.
MMPBSA.py : An efficient program for end-state free energy
calculations. Am Chem Soc 2012;8:3314-21.
24. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and
inhibitors: Promises, achievements, and challenges. Pharmacol Ther
2018;188:140-54.
25. Aldisa O, Azminah A, Erlina L, Hayun H, Yanuar A. Virtual screening
of Indonesian herbal database to find sirtuin 1 activators using the
docking method. Asian J Pharm Clin Res 2017;10:158-62.
26. Sowndarya R, Doss VA. Evaluation of sirtuin 3 biomarker before and
after exercise regimen in chronic unpredictable mild stress-induced
depressed rats. Asian J Pharm Clin Res 2019;12:180-4.

Published

05-04-2019

How to Cite

AZMINAH, A., RADJI, M., MUN’IM, A., SYAHDI, R. R., & YANUAR, A. (2019). IN SILICO STUDY OF SIRT1 ACTIVATORS USING A MOLECULAR DYNAMIC APPROACH. International Journal of Applied Pharmaceutics, 11(1), 237–245. https://doi.org/10.22159/ijap.2019.v11s1.19266

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2 3 4 > >>