PROCESSING PARACETAMOL-5-NITROISOPHTHALIC ACID COCRYSTAL USING SUPERCRITICAL CO2 AS AN ANTI-SOLVENT

Authors

  • RAYMOND R. TJANDRAWINATA Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk-Lapan No. 10, Tangerang 15345, Indonesia
  • STEVANUS HIENDRAWAN Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia
  • BAMBANG VERIANSYAH Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia

DOI:

https://doi.org/10.22159/ijap.2019v11i5.34554

Keywords:

5-nitroisophthalic acid, Carbon dioxide, Cocrystal, Paracetamol, Supercritical anti-solvent

Abstract

Objective: A new method of cocrystallization based on the use of supercritical carbon dioxide (CO2) as an anti-solvent was explored. In the present study, we investigate and analyze paracetamol (PCA)-5-nitroisophthalic acid (5NIP) cocrystal produced using supercritical anti-solvent (SAS) process.

Methods: PCA-5NIP cocrystals prepared by SAS cocrystallization were compared to those produced using traditional solvent evaporation by rapid evaporation (RE) process. The cocrystals produced were characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), Fourier Transform Infrared (FTIR) spectroscopy, particle size analysis and scanning electron microscopy (SEM).

Results: The products obtained from SAS and RE process exhibited identical PXRD spectra and were distinguishable from the individual compounds, indicating the formation of a new phase. DSC analysis revealed that PCA-5NIP cocrystals from each method possess similar melting point which lies between the melting points of the parent compounds. Cocrystal particles with a mean diameter of 4.66 µm were produced from SAS process, which was smaller than those produced by traditional solvent evaporation method with a mean diameter of 38.09 μm.

Conclusion: This study demonstrates the ability of SAS process to produce the submicron size of PCA-5NIP cocrystal with altered physicochemical properties in a single step process.

Downloads

Download data is not yet available.

References

Hiendrawan S, Hartanti AW, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Solubility enhancement of ketoconazole via salt and cocrystal formation. Int J Pharm Pharm Sci 2015;7:160-4.

Alatas F, Ratih H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int J Pharm Pharm Sci 2015;7:423-6.

Fukte SR, Wagh MP, Rawat S. Coformer selection: an important tool in cocrystal formation. Int J Pharm Pharm Sci 2014;6:9-14.

Hiendrawan S, Veriansyah B, Tjandrawinata RR. Solid-state properties and solubility studies of a novel pharmaceutical cocrystal of Itraconazole. Int J Appl Pharm 2018;10:97-104.

Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm 2016;497:106-13.

Putra OD, Umeda D, Nugraha YP, Nango K, Yonemochi E, Uekusa H. Simultaneous improvement of epalrestat photostability and solubility via cocrystallization: a case study. Cryst Growth Des 2018;18:373-9.

Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun 2016;52:8342-60.

Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007;4:301-9.

Reflection paper on the use of cocrystals and other solid-state forms of active substances in medicinal products. European Medicines Agency. Available from: http://www.ema.europa.eu/ docs/en_GB/document_library/Scientific_guideline/2015/07/WC500189927.pdf. [Last accessed on 23 May 2019].

Guidance for industry: regulatory classification of pharmaceutical co-crystals. US Food and Drug Administration. Available from: https://www.fda.gov/downloads/Drugs/ Guidances/UCM281764.pdf. [Last accessed on 23 May 2019].

Fucke K, Myz SA, Shakhtshneider TP, Boldyreva EV, Griesser UJ. How good are the crystallisation methods for co-crystals? A comparative study of piroxicam. New J Chem 2012;36:1969-77.

Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystalization. Cryst Growth Des 2008;88:3032-7.

Chen JM, Wang ZZ, Wu CB, Li S, Lu TB. Crystal engineering approach to improve the solubility of mebendazole. Cryst Eng Comm 2012;14:6221-9.

Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top Curr Chem 2005;254:41-70.

Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta 2014;575:313-21.

Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res 2010;27:2725-33.

Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine: nicotinamide cocrystals by spray drying. Eur J Pharm Sci 2014;62:251-7.

Eddleston MD, Patel B, Day GM, Jones W. Cocrystallization by freeze-drying: Preparation of novel multicomponent crystal forms. Cryst Growth Des 2013;13:4599-606.

Pando C, Cabanas A, Cuadra IA. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review. RSC Adv 2016;6:71134-50.

Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010;53:156-64.

Ober CA, Gupta RB. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 2012;13:1396-406.

Mullers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res 2015;32:702-13.

Zhao Z, Liu G, Lin Q, Jiang Y. Co-crystal of paracetamol and trimethylglycine prepared by a supercritical CO2 anti-solvent process. Chem Eng Technol 2018;41:1-11.

Cuadra IA, Cabanas A, Cheda JAR, Pando C. Polymorphism in the co-crystallization of the anticonvulsant drug carbamazepine and saccharin using supercritical CO2 as an anti-solvent. J Supercrit Fluids 2018;136:60-9.

Hiendrawan S, Veriansyah B, Tjandrawinata RR. Micronization of fenofibrate by rapid expansion of the supercritical solution. J Ind Eng Chem 2014;20:54-60.

Hiendrawan S, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Simultaneous micronization and purification of the bioactive fraction by supercritical antisolvent technology. J Adv Pharm Technol Res 2017;8:52-8.

Widjojokusumo E, Veriansyah B, Tjandrawinata RR. Supercritical anti-solvent (SAS) micronization of Manilkara kauki bioactive fraction (DLBS2347). J CO2 Util 2013;4:30-6.

Ober CA, Montgomery SE, Gupta RB. Formation of itraconazole/l-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol 2013;236:122-31.

Neurohr C, Revelli AL, Billot P, Marchivie M, Lecomte S, Laugier S, et al. Naproxen-nicotinamide cocrystals produced by CO2 antisolvent. J Supercrit Fluids 2013;83:78-85.

Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Simultaneous cocrystallization and micronization of paracetamol-dipicolinic acid cocrystal by supercritical antisolvent (SAS). Int J Pharm Pharm Sci 2016;8:89-98.

Kim MS, Lee S, Park JS, Woo JS, Hwang SJ. Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. Powder Technol 2007;177:64-70.

Lu E, Hornedo NR, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm 2008;10:665-8.

Perlovich GL. Thermodynamic characteristics of cocrystal formation and melting points for the rational design of pharmaceutical two-component systems. Cryst Eng Comm 2015;17:7019-28.

Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des 2015;15:1173-9.

Yeo SD, Lee JC. Crystallization of sulfamethizole using the supercritical and liquid antisolvent processes. J Supercrit Fluids 2004;30:315-23.

Chadha R, Saini A, Jain DS, Venugopalan P. Preparation and solid-state characterization of three novel multicomponent solid forms of oxcarbazepine: Improvement in solubility through saccharin cocrystal. Cryst Growth Des 2012;12:4211-24.

Chow SF, Shi L, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des 2014;14:5079-89.

Wang L, Tan B, Zhang H, Deng Z. Pharmaceutical cocrystals of diflunisal with nicotinamide or iso-nicotinamide. Org Process Res Dev 2013;17:1413-8.

Garekani HA, Ford JL, Rubinstein MH, Siahboomi ARR. Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol. Int J Pharm 1999;187:77-89.

Published

07-09-2019

How to Cite

TJANDRAWINATA, R. R., HIENDRAWAN, S., & VERIANSYAH, B. (2019). PROCESSING PARACETAMOL-5-NITROISOPHTHALIC ACID COCRYSTAL USING SUPERCRITICAL CO2 AS AN ANTI-SOLVENT. International Journal of Applied Pharmaceutics, 11(5), 194–199. https://doi.org/10.22159/ijap.2019v11i5.34554

Issue

Section

Original Article(s)