METHOD VALIDATION OF SIMVASTATIN IN PCL-PEG-PCL TRIBLOCK COPOLYMER MICELLES USING UV-VIS SPECTROPHOTOMETRIC FOR SOLUBILITY ENHANCEMENT ASSAY

Authors

  • DEWI PATMAYUNI Bhakti Pertiwi, School of Pharmacy Science, Palembang 30128 Indonesia
  • T. N. SAIFULLAH SULAIMAN Departement of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281 Indonesia
  • ABDUL KARIM ZULKARNAIN Departement of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281 Indonesia
  • SHAUM SHIYAN Departement of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Indralaya 30622 Indonesia

DOI:

https://doi.org/10.22159/ijap.2022v14i1.42961

Keywords:

Simvastatin, Triblock copolymer, PCL, PEG, Validation, Uv-Vis spectrophotometric

Abstract

Objective: This study aims to increase the solubility of simvastatin (SIM), a hydrophobic drug, by incorporating it into PCL-PEG-PCL triblock copolymer micelles and validating the assay method used, namely Uv-Vis spectrophotometric.

Methods: The shake flask method was used to determine the increase in solubility experienced by SIM after being incorporated into the micellar system. The values ​​of maximum wavelength (λmax), linearity, LOD, LOQ, accuracy, and precision were used as parameters measured to assess the validity of the assay method used.

Results: The results showed that PCL-PEG-PCL triblock copolymer micelles could increase SIM solubility by 9.7 times (89.49±5.75 µg/ml) compared to SIM without modification (9.19±0.24 µg/ml). The validation results show the λmax value of 239 nm, a linear calibration curve with an R-value of 0.9994, LOD and LOQ of 0.33 µg/ml and 1.00 µg/ml, accurate measurement with recovery at concentrations of 80%, 100%, and 120% were 102.93±1.32%, 100.78±0.40%, and 104.58±0.79% and also had good precision ​​with RSD<2%.

Conclusion: The PCL-PEG-PCL triblock copolymer micelles can increase SIM solubility and the Uv-Vis spectrophotometric method has been validated successfully for the quantitative analysis of SIM in PCL-PEG-PCL triblock copolymer micelles.

Downloads

Download data is not yet available.

References

He G, Ma LL, Pan J, Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and ”stealth” particle characteristics. Int J Pharm. 2007;334(1-2):48-55. doi: 10.1016/j.ijpharm.2006.10.020, PMID 17116377.

Murtaza G. Solubility enhancement of simvastatin: a review. Acta Pol Pharm. 2012;69(4):581-90. PMID 22876598.

Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230-9. doi: 10.3109/03639045.2011.645830, PMID 22229827.

Rohilla A, Khan MU, Khanam R. Cardioprotective potential of simvastatin in the hyperhomocysteinemic rat heart. J Adv Pharm Technol Res. 2012;3(3):193-8. doi: 10.4103/2231-4040.101018, PMID 23057007.

Yulianita R, Sopyan I, Muchtaridi M. Forced degradation study of statins: a review. Int J Appl Pharm. 2018;10(6):38-42. doi: 10.22159/ijap.2018v10i6.29086.

Verma N. Introduction to hyperlipidemia and its treatment: a review. Int J Curr Pharm Sci. 2017;9(1):6-14. doi: 10.22159/ijcpr.2017v9i1.16616.

Rosyida NF, Pudyani PS, Nugroho AK, Ana ID, Ariyanto T. Solubility enhancement of simvastatin through surfactant addition for development of hydrophobic drug-loaded gelatin hydrogel. Indones J Chem. 2019;19(4):920-7. doi: 10.22146/ijc.38153.

Meor Mohd Affandi MM, Tripathy M, Shah SA, Majeed AB. Solubility enhancement of simvastatin by arginine: thermodynamics, solute–solvent interactions, and spectral analysis. Drug Des Devel Ther. 2016;10:959-69. doi: 10.2147/DDDT.S94701, PMID 27041998.

Essa EA, Dwaikat M. Enhancement of simvastatin dissolution by surface solid dispersion: effect of carriers and wetting agents. J Appl Pharm Sci. 2015;5:46-53.

Borawake PD, Arumugam K, Shinde JV. Formulation of solid dispersions for enhancement of solubility and dissolution rate of simvastatin. Int J Pharm Pharm Sci. 2021;13:94-100. doi: 10.22159/ijpps.2021v13i7.41205.

Pescina S, Sonvico F, Clementino A, Padula C, Santi P, Nicoli S. Preliminary investigation on simvastatin-loaded polymeric micelles in view of the treatment of the back of the eye. Pharmaceutics. 2021;13(6):1-15. doi: 10.3390/pharmaceutics13060855, PMID 34207544.

Shital SP, Rakesh M, Shirolkar SV. Spherical agglomeration a novel approach for solubility and dissolution enhancement of simvastatin. Asian J Pharm Clin Res. 2016;9:65-72.

Sopyan I, Syah ISK, Nurhayti D, Budiman A. Improvement of simvastatin dissolution rate using derivative non-covalent approach by solvent drop grinding method. Int J Appl Pharm. 2020;12:21-4. doi: 10.22159/ijap.2020v12i1.35865.

Sopyan I, Fudhol A, Puspitasari MM I. A simple effort to enhance solubility and dissolution rate of simvastatin using co-crystallization. Int J Pharm Pharm Sci. 2016;8:342-6.

Sulaiman TNS, Patmayuni D, Zulkarnain AK. Optimization of PCL-PEG-PCL triblock copolymer micelles as hydrophobic drug carrier with a 22 full factorial design. Int J Appl Pharm. 2019;11:42-7.

Birari AE. Development and validation of UV spectrophotometric method for estimation of simvastatin in bulk and solid dosage form. Int J Pharm Sci Res. 2015;6:85-9.

Dey S, Pradhan PK, Upadhayay UM, Patel C, Lad B. Method development and validation of simvastatin by UV spectrophotometric method. J Pharm Res. 2012;5:5380-2.

Sharma M, Kaur R, Singh S, Kharb V, Jain UK. Development and validation of Uv spectroscopic method for the estimation of simvastatin. World J Pharm Pharm Sci. 2013;3:763-71.

Panamasha AJ, Tejaswi K, Parimala SS. Spectrophotometric estimation of simvastatin in bulk and tablet dosage form. Int J Innov Pharm Res. 2013;4:284-7.

Sandeep K, Suresh P, Gupta GD. Effect of non-ionic surfactant on the solubility and dissolution of simvastatin. Int Res J Pharm. 2011;2:100-2.

AOAC. Peer verified program, manual on policies and procedures. Washington DC. Arlington; 1993.

Moffat C, Osselton M, Widdop B. Clarke’s analysis of drugs and poisons. 3rd ed. London: Pharmaceutical Press; 2005.

Alami-milani M, Zakeri-milani P, Valizadeh H, Salehi R, Jelvehgari M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci. 2018;21(2):153-64. doi: 10.22038/IJBMS.2017.26590.6513, PMID 29456812.

Cho HK, Cheong IW, Lee JM, Kim JH. Polymeric nnanoparticles, mmicelles, and ppolymersomes ffrom aamphiphilic bblock ccopolymer. Kor J Chem Eng. 2010;27:731-40.

Zamani S, Khoee S. Preparation of core-shell chitosan/PCL-PEG triblock copolymer nanoparticles with ABA and BAB morphologies: effect of intraparticle interactions on physicochemical properties. Polymer. 2012;53(25):5723-36. doi: 10.1016/j.polymer.2012.09.051.

Rajeshwar BR, Gatla A, Rajesh G, Arjun N, Swapna M. Polymeric micelles: A nanoscience technology. Indo American J Pharm Res. 2011;1:351-63.

Doolaanea AA, Mawazi SM, Hadi HAB, Al-mahmood SMAMawazi SM, Hadi HAB, Al-mahmood SMA, Doolaanea AA. Development and validation of UV–vis spectroscopic method of assay of carbamazepine in microparticles. Int J Appl Pharm. 2019;11(1):34-7. doi: 10.22159/ijap.2019v11i1.26256.

Prasad AR, Thireesha B. Uv-spectrophotometric method development and validation for the determination of lornoxicam in microsponges. Int J Appl Pharm. 2018;10(1):74-8. doi: 10.22159/ijap.2018v10i1.22357.

Published

07-01-2022

How to Cite

PATMAYUNI, D., SULAIMAN, T. N. S., ZULKARNAIN, A. K., & SHIYAN, S. (2022). METHOD VALIDATION OF SIMVASTATIN IN PCL-PEG-PCL TRIBLOCK COPOLYMER MICELLES USING UV-VIS SPECTROPHOTOMETRIC FOR SOLUBILITY ENHANCEMENT ASSAY. International Journal of Applied Pharmaceutics, 14(1), 246–250. https://doi.org/10.22159/ijap.2022v14i1.42961

Issue

Section

Original Article(s)