OVERVIEW OF MITOXANTRONE-A POTENTIAL CANDIDATE FOR TREATMENT OF BREAST CANCER
DOI:
https://doi.org/10.22159/ijap.2022v14i2.43474Keywords:
Breast cancer, Anthraquinone, Mitoxantrone, Nano formulationAbstract
Anthraquinones are one of the popular classes of aromatic compounds which possess potential anticancer properties by suppressing the nucleic acid formation and proteins essential to the survival of cancerous cells. Mitoxantrone (MT) is an antibiotic and antineoplastic agent belonging to the anthracycline class of compounds which exhibit minimal incident of drug resistance. It is a synthetic anticancer drug, bound to enzyme topoisomerase IIα inhibitor, and intercalates DNA topoisomerase IIα, preventing re-ligations in DNA strands fragmentation and disruption of DNA repair. The expression of this enzyme was used tumor cells marker because of its key function in cell proliferation. The cleavable complex of topoisomerase IIα is hypothesized to damage the DNA and may enhance apoptosis in tumor cell proliferation. The susceptibility of cells to mitoxantrone is associated with cell topoisomerase II α protein and lowered resistance in breast cancer line cell lines to topoisomerase IIα inhibitors. MT is an ABC-transporter in breast cancer, also designated to be associated with “Breast cancer resistance protein” (BCRP) and it is also a cell cycle non-specific anti-cancer drug and P-glycoprotein substrate. Multiple drug resistance is one of the major drawbacks of this drug which can be avoided by reducing the efflux of the drug from cancer cells by formulating drug by using lipophilic carriers. This manuscript discusses about MT's source, chemistry, physicochemical properties, anti-cancer effects of mitoxantrone and possible pathways, Mitoxantrone targeting topoisomerase II inhibitor for cancer therapy and its mechanism, Various Nano formulation development strategy, toxicity profile, and a few patents related information.
Downloads
References
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi: 10.3322/caac.21590, PMID 31912902.
Eaton L. World cancer rates set to double by 2020. Br Med J. 2003;326(7392):728. doi: 10.1136/bmj.326.7392.728/a, PMID 12676827.
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210, PMID 25220842.
Dobson JM, Hohenhaus AE, Peaston AE. Cancer chemotherapy. In: Small animal clinical pharmacology. Second. 1st ed. Elsevier; 2008. p. 330-66.
Kumar A. Comprehensive review on etiopathogenesis, treatment and emerging therapies of breast cancer. Asian J Pharm Clin Res. 2021;14(8):20-33. doi: 10.22159/ajpcr.2021.v14i8.41974.
Mathew A, George PS, Arjunan A, Augustine P, Kalavathy MC, Padmakumari G, Mathew BS. Temporal trends and future prediction of breast cancer incidence across age groups in Trivandrum, South India. Asian Pac J Cancer Prev. 2016;17(6):2895-9. PMID 27356709.
Labrèche F, Goldberg MS, Hashim D, Weiderpass E. Breast cancer. Occup Cancers. 2020. p. 417-38.
Cancer control opportunities in low- and middle-income countries [internet]. Washington, DC: National Academies Press; 2007.
Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54(2):407-19. doi: 10.3892/ijo.2018.4661, PMID 30570109.
Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S. Nobiletin as a molecule for formulation development: an overview of advanced formulation and nanotechnology-based strategies of nobiletin. AAPS PharmSciTech. 2020 Aug 5;21(6):226. doi: 10.1208/s12249-020-01767-0, PMID 32761293.
Kharasch ED, Wendel NK, Novak RF. Anthracenedione antineoplastic agent effects on drug metabolism in vitro and in vivo: relationship between structure and mechanism of inhibition. Fundam Appl Toxicol. 1987;9(1):18-25. doi: 10.1016/0272-0590(87)90149-7, PMID 3114031.
Al-Otaibi JS, Teesdale Spittle P, El Gogary TM. Interaction of anthraquinone anti-cancer drugs with DNA: experimental and computational quantum chemical study. J Mol Struct. 2017;1127:751-60. doi: 10.1016/j.molstruc.2016.08.007.
Kreft D, Wang Y, Rattay M, Toensing K, Anselmetti D. Binding mechanism of anti-cancer chemotherapeutic drug mitoxantrone to DNA characterized by magnetic tweezers. J Nanobiotechnology. 2018;16(1):56. doi: 10.1186/s12951-018-0381-y, PMID 30005668.
Singh RS, SM, Chauhan SM. 9,10-Anthraquinones and other biologically active compounds from the genus Rubia. Chem Biodivers. 2004;1(9):1241-64. doi: 10.1002/cbdv.200490088, PMID 17191903.
Tian W, Wang C, Li D, Hou H. Novel anthraquinone compounds as anticancer agents and their potential mechanism. Future Med Chem. 2020;12(7):627-44. doi: 10.4155/fmc-2019-0322, PMID 32175770.
Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evid Based Complement Alternat Med. 2015;2015:357357. doi: 10.1155/2015/357357, PMID 25866536.
Huang Q, Lu G, Shen HM, Chung MC, Ong CN. Anti‐cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007;27(5):609-30. doi: 10.1002/med.20094, PMID 17022020.
Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evid Based Complement Alternat Med. 2015;2015:357357. doi: 10.1155/2015/357357, PMID 25866536.
Winter RW, Cornell KA, Johnson LL, Ignatushchenko M, Hinrichs DJ, Riscoe MK. Potentiation of the antimalarial agent rufigallol. Antimicrob Agents Chemother. 1996;40(6):1408-11. doi: 10.1128/AAC.40.6.1408, PMID 8726010.
Fosso MY, Chan KY, Gregory R, Chang CW. Library synthesis and antibacterial investigation of cationic anthraquinone analogs. ACS Comb Sci. 2012;14(3):231-5. doi: 10.1021/co2002075, PMID 22324350.
Friedman M, Xu A, Lee R, Nguyen DN, Phan TA, Hamada SM, Panchel R, Tam CC, Kim JH, Cheng LW, Land KM. The inhibitory activity of anthraquinones against pathogenic protozoa, bacteria, and fungi and the relationship to structure. Molecules. 2020 Jul 7;25(13):3101. doi: 10.3390/molecules25133101, PMID 32646028.
Kshirsagar AD, Panchal PV, Harle UN, Nanda RK, Shaikh HM. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents. Int J Inflam. 2014;2014:690596. doi: 10.1155/2014/690596, PMID 25610704.
Mellado M, Madrid A, PenA-CorteS H, LoPez R, Jara C, Espinoza L. Antioxidant activity of anthraquinones isolated from leaves of muehlenbeckia hastulata (JE SM.) Johnst. (polygonaceae). (polygonaceae). J Chil Chem Soc. 2013;58(2):1767-70. doi: 10.4067/S0717-97072013000200028.
Huang Q, Lu G, Shen HM, Chung MCM, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007 Sep;27(5):609-30. doi: 10.1002/med.20094, PMID 17022020.
Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020;12(11):1037-69. doi: 10.4155/fmc-2019-0198, PMID 32349522.
Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992;267(5):3257-61. doi: 10.1016/S0021-9258(19)50724-4, PMID 1339448.
Colbow K, Dunyluk RP. Energy transfer in photosynthesis. Int J Quantum Chem. 2009 Jun 18;10(S3);Suppl 3:151-9. doi: 10.1002/qua.560100718. PMID 4751233
El-Gogary TM, El-Gendy EM. Noncovalent attachment of psoralen derivatives with DNA: Hartree–Fock and density functional studies on the probes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2003;59(11):2635-44. doi: 10.1016/S1386-1425(03)00038-6.
Hande KR. Topoisomerase II inhibitors. Update on Cancer Therapeutics. 2008;3(1):13-26. doi: 10.1016/j.uct.2008.02.001. PMID 11686011
Zheng Y, Zhu L, Fan L, Zhao W, Wang J, Hao X, Zhu Y, Hu X, Yuan Y, Shao J, Wang W. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents. Eur J Med Chem. 2017;125:902-13. doi: 10.1016/j.ejmech.2016.10.012, PMID 27769031.
Diaz Munoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MAN. Anthraquinones: an overview. Stud Nat Prod Chem. 2018;58:313-38. doi: 10.1016/B978-0-444-64056-7.00011-8.
DeVita Jr V, Rosenberg SA, DeVita-Cancer HS. Principles and practice of oncology (Jul); 2001.
Feofanov A, Sharonov S, Fleury F, Kudelina I, Nabiev I. Quantitative confocal spectral imaging analysis of mitoxantrone within living K562 cells: intracellular accumulation and distribution of monomers, aggregates, naphtoquinoxaline metabolite, and drug-target complexes. Biophys J. 1997;73(6):3328-36. doi: 10.1016/S0006-3495(97)78357-7, PMID 9414243.
Lorna De Leoz MA, Chua MT, Ann Endoma-Arias MA, Concepcion GP, Cruz LJ, De Leoz MLA. A modified procedure for the preparation of mitoxantrone. Philipp J Sci. 2006;135(2):83-92.
Von Hoff DD, Coltman CA, Forseth B. Activity of mitoxantrone in a human tumor cloning system. Cancer Res. 1981;41(5):1853-5. PMID 7214352.
Neidhart JA, Gochnour D, Roach R, Hoth D, Young D. A comparison of mitoxantrone and doxorubicin in breast cancer. J Clin Oncol. 1986;4(5):672-7. doi: 10.1200/JCO.1986.4.5.672, PMID 3517241.
Zee-Cheng RK, Cheng CC. Antineoplastic agents. Structure–activity relationship study of bis (substituted aminoalkylamino) anthraquinones. J Med Chem. 1978;21(3):291-4. doi: 10.1021/jm00201a012, PMID 628005.
YAP HY, Yap ITY, Blumenshcin GR, Schell FC, Buzdar A, Valdivieso M BG. Dihydroxyanthracenedione: A promising new drug in the treatment of metastatic breast cancer. Ann Intern Med. 1981 Dec 1;95(6):694.
Ling G, Zhang T, Zhang P, Sun J, He Z. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition. Int J Nanomedicine. 2016;11:4077-91. doi: 10.2147/IJN.S95767, PMID 27601896.
Smith IE, Stuart-Harris R, Pavlidis N, Bozek T. Mitoxantrone (Novantrone) as single agent and in combination chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rev. 1983;10;Suppl B:37-40. doi: 10.1016/0305-7372(83)90020-8, PMID 6661733.
Neidhart JA, Gochnour D, Roach RW, Steinberg JA, Young D. Mitoxantrone versus doxorubicin in advanced breast cancer: A randomized cross-over trial. Cancer Treat Rev. 1983;10;Suppl B:41-6. doi: 10.1016/0305-7372(83)90021-x, PMID 6362877.
Brufman G, Haim N, Ben-Baruch N, Sulkes A. Second-line chemotherapy with mitoxantrone as a single agent in metastatic breast cancer. J Chemother. 1993;5(1):43-6. doi: 10.1080/1120009x.1993.11739208, PMID 8459264.
Montazerabadi A-RR, Sazgarnia A, Bahreyni-Toosi MH, Ahmadi A, Shakeri-Zadeh A, Aledavood A. Mitoxantrone as a prospective photosensitizer for photodynamic therapy of breast cancer. Photodiagn Photodyn Ther. 2012 Mar;9(1):46-51. doi: 10.1016/j.pdpdt.2011.08.004, PMID 22369728.
Carter KA, Wang S, Geng J, Luo D, Shao S, Lovell JF. Metal chelation modulates phototherapeutic properties of mitoxantrone-loaded porphyrin–phospholipid liposomes. Mol Pharm. 2016 Feb;13(2):420-7. doi: 10.1021/acs.molpharmaceut.5b00653, PMID 26691879.
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326(Apr):628-47. doi: 10.1016/j.jconrel.2020.07.003, PMID 32653502.
Bowden GT, Peng YM AD. Comparative molecular pharmacology of the anthracene anticancer drugs bisantrene and mitoxantrone. Proc Am Assoc Cancer Res. 1984;25(Mar):296.
Chand P, Kumar H, Badduri N, Gupta NV, Bettada VG, Madhunapantula SV, Kesharwani SS, Dey S, Jain V. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surf B Biointerfaces. 2021 Mar;199:111535. doi: 10.1016/j.colsurfb.2020.111535.
Cornbleet MA, Stuart Harris RC, Smith IE, Coleman RE, Rubens RD, McDonald M, Mouridsen HT, Rainer H, van Oosterom AT, Smyth JF SJ. Mitoxantrone for the treatment of advanced breast cancer: single-agent therapy in previously untreated patients. Eur J Cancer Clin Oncol. 1984;20(9):1141-6. doi: 10.1016/0277-5379(84)90122-6, PMID 6541135.
Tao X, Tao T, Wen Y, Yi J, He L, Huang Z, Nie Y, Yao X, Wang Y, He C, Yang X. Novel delivery of mitoxantrone with hydrophobically modified pullulan nanoparticles to inhibit bladder cancer cell and the effect of nano-drug size on inhibition efficiency. Nanoscale Res Lett. 2018;13(1):345. doi: 10.1186/s11671-018-2769-x, PMID 30377872.
Carmen Avendano JCC, Avendano C, Menendez JC, Carmen Avendano JCC, Avendano C, Menendez JC. Anticancer drugs acting via radical species. Med Chem Anticancer Drugs. 2015;20:133-95.
Cheng CC. The design, synthesis and development of a new class of potent antineoplastic anthraquinones. Prog Med Chem. 1983;20:83-118. doi: 10.1016/s0079-6468(08)70217-0.
Adamson RH. Letter: Daunomycin (NSC-82151) and adriamycin (NSC-123127): a hypothesis concerning antitumor activity and cardiotoxicity. Cancer Chemother Rep. 1974;58(3):293. PMID 4841712.
Durr FE. Biochemical pharmacology and tumor biology of mitoxantrone and ametantrone. In: Lown JW, Edseditor Anthracycline and Aanthracenedione-Bbased Aanticancer Aagents. The Netherlands: Amsterdam, The Netherlands; 1988. p. 163-200.
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi: 10.1124/pr.56.2.6, PMID 15169927.
Mitoxantrone injection product monograph. Novopharm Limited. Rose BD editor. Mitoxantrone. 15.3 ed. Waltham, MA; 2008.
Richmond Hill O. Mitoxantrone injection package insert. Pharmaceutical partners of Canada; 2021.
Et CM. Mitoxantrone (Novantrone) Drugs.com. 2021.
Saint Laurent Q. Mitoxantrone injection, USP product monograph. Hospira Healthcare Corporation; 2014.
Stuart Harris RC, Smith IE. Mitoxantrone: a phase II study in the treatment of patients with advanced breast carcinoma and other solid tumours. Cancer Chemother Pharmacol. 1982;8(2):179-82. doi: 10.1007/BF00255480, PMID 7105382.
Durr Fe, Wallace Re Citarella Rv. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treat Rev. 1983;10:3-11.
Niang M, Soukup T, Bukac J, Siman P, Stoklasova A, Cerman J. Chemotherapy: open access biochemical and pharmacological effects of mitoxantrone and acetyl-L-carnitine in mice with a solid form of Ehrlich tumour. 2015;5(1):1-2.
Traganos F, Evenson DP, Staiano-Coico L, Darzynkiewicz Z, Melamed MR, Evenson DP, Staiano-coico L, Darzynkiewicz Z Melamed MR. Action of dihydroxyanthraquinone on cell cycle progression and survival of a variety of cultured mammalian cells. Cancer Res. 1980;40(3):671-81. PMID 6162553.
AM Huang LKL, Huang AM, Lin KW LW, Huang AM LKL, KL. 1-Hydroxy-3-[(E)-4-(piperazine-diium)but-2-enyloxy]-9,10-anthraquinone ditrifluoroactate induced autophagic cell death in human PC3 cells. Chem Biol Interact. 2018;281:60-8.
Liu Y, Liu Y ZYT. An autophagy-dependent cell death of MDA-MB-231 cells triggered by a novel Rhein derivative 4F. Anticancer Drugs. 2019;30(10):1038-47. doi: 10.1097/CAD.0000000000000820, PMID 31274517.
Chen H, Zhao C, He R, Zhou M, Liu Y, Guo X, Wang M, Zhu F, Qin R, Li X ZCH, Chen H, Zhao C HR. Danthron suppresses autophagy and sensitizes pancreatic cancer cells to doxorubicin. Toxicol Vitr. 2019;54:345-53. doi: 10.1016/j.tiv.2018.10.019.
Tian W, LJS JS, Tian W, Li J SZ, Tian W LJS. Novel anthraquinone compounds induce cancer cell death through paraptosis. ACS Med Chem Lett. 2019;10(5):732–6.
Wang D, Wang S, Liu Q, Wang M, Wang C, Yang H. SZ-685C exhibits potent anticancer activity in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol Rep. 2013;29(6):2341-7. doi: 10.3892/or.2013.2376, PMID 23564023.
Su Z, Li Z, Wang C, Tian W, Lan F, Liang D, Li J, Li D, Hou H. A novel rhein derivative: activation of Rac1/NADPH pathway enhances sensitivity of nasopharyngeal carcinoma cells to radiotherapy. Cell Signal. 2019;54:35-45. doi: 10.1016/j.cellsig.2018.11.015. PMID 30463023.
Koerner SK, Hanai JI, Bai S, Jernigan FE, Oki M, Komaba C, Shuto E, Sukhatme VP, Sun L BS, Koerner SK HJB. Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase. Eur J Med Chem. 2017;126:920-8. doi: 10.1016/j.ejmech.2016.12.018, PMID 27997879.
YYZ WQ, Wang Q, Yan Y ZJ. Physcion 8-O-β-glucopyranoside inhibits clear-cell renal cell carcinoma bydownregulating hexokinase II and inhibiting glycolysis. Biomed Pharmacother. 2018;104:28-35.
Huang K, Jiang L LH, Huang K JLL. Development of anthraquinone analogs as phosphoglycerate mutase 1 inhibitors. Molecules. 2019;24(5):845.
Lown JW, Hanstock CC, Bradley RD SD, Lown JW, Hanstock CC, Bradley BD, Scraba DG, Lown JW, Hanstock CC, Bradley RD SD. Interactions of the antitumor agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Mol Pharmacol. 1984;25(1):178–84.
Foye WO, Vajragupta O, Sengupta SK. DNA-binding specificity and RNA polymerase inhibitory activity of bis(aminoalkyl)anthraquinones and bis(methylthio)vinylquinolinium iodides. J Pharm Sci. 1982;71(2):253-7. doi: 10.1002/jps.2600710228, PMID 7038093.
Alberts DS, Yei L, Peng M, Bowden GT, Dalton WS, Mackel C. Pharmacology of mitoxantrone: mode of action and pharmacokinetics x section. Hematology/Oncology. 1985;107:101-7.
Garnier F, Debat H, Nadal M. Type IA DNA topoisomerases: A universal core and multiple activities. Methods Mol Biol. 2018;1703:1-20. doi: 10.1007/978-1-4939-7459-7_1, PMID 29177730.
Fry AM, Chresta CM, Davies SM, Claire Walker MC, Harris AL, Hartley JA, Masters JR, Hickson ID. Relationship between topoisomerase II level and chemosensitivity in human tumor cell lines. Cancer Res. 1991;51(24):6592-5. PMID 1660343.
Sissi C, Palumbo M. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res. 2009 Feb 1;37(3):702-11. doi: 10.1093/nar/gkp024, PMID 19188255.
Hsiang YH, Liu LF. DNA topoisomerase poisons as antitumor drugs. Cancer chemother challenges futur. Proceedings of the fourth Nagoya international symposium cancer treat ICS904; 1989. p. 305-11.
Depowski PL, Rosenthal SI, Brien TP, Stylos S, Johnson RL, Ross JS. Topoisomerase IIα expression in breast cancer: correlation with outcome variables. Mod Pathol. 2000;13(5):542-7. doi: 10.1038/modpathol.3880094, PMID 10824926.
Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B. 2018 Oct;8(6):844-61. doi: 10.1016/j.apsb.2018.07.008, PMID 30505655.
Abu Saleh M, Solayman M, Hoque MM, Khan MAK, Sarwar MG, Halim MA. Inhibition of DNA topoisomerase Type II α (TOP2A) by mitoxantrone and its halogenated derivatives: A combined density functional and molecular docking study. BioMed Res Int. 2016;2016:1-12. doi: 10.1155/2016/6817502.
Hevener KE, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B. 2018;8(6):844-61. doi: 10.1016/j.apsb.2018.07.008, PMID 30505655.
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009 May 20;9(5):338-50. doi: 10.1038/nrc2607, PMID 19377506.
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010 May;17(5):421-33. doi: 10.1016/j.chembiol.2010.04.012, PMID 20534341.
Ali JA, Jackson AP, Howells AJ, Maxwell A. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry. 1993 Mar 16;32(10):2717-24. doi: 10.1021/bi00061a033, PMID 8383523.
Bisacchi GS, Manchester JI. A new-class antibacterial-almost. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis. 2015 Jan 9;1(1):4-41. doi: 10.1021/id500013t, PMID 27620144.
Lindsey RH, Pendleton M, Ashley RE, Mercer SL, Deweese JE, Osheroff N. Catalytic core of human topoisomerase IIα: insights into enzyme–DNA interactions and drug mechanism. Biochemistry. 2014 Oct 21;53(41):6595-602. doi: 10.1021/bi5010816, PMID 25280269.
Gibson EG, Deweese JE. Covalent poisons of topoisomerase II. Curr Top Pharmacol. 2013;17(1):1-12.
Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res. 2009 Feb 1;37(3):738-48. doi: 10.1093/nar/gkn937, PMID 19042970.
Roca J, Wang JC. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell. 1994 May;77(4):609-16. doi: 10.1016/0092-8674(94)90222-4, PMID 8187179.
Maxwell A, Lawson DM. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem. 2003 Jan 1;3(3):283-303. doi: 10.2174/1568026033452500, PMID 12570764.
Chene P, Rudloff J, Schoepfer J, Furet P, Meier P, Qian Z, Schlaeppi JM, Schmitz R, Radimerski T. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem Biol. 2009 Dec 7;9(1):1. doi: 10.1186/1472-6769-9-1, PMID 19128485.
Roboz J, Richardson CL, Holland JF. Comparison of the interaction of antineoplastic aminoanthraquinone analogs with DNA using competitive fluorescence polarization. Life Sci. 1982;31(1):25-30. doi: 10.1016/0024-3205(82)90396-4, PMID 7109851.
Faulds D, Balfour JA, Chrisp P, Langtry HD. Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs. 1991;41(3):400-49. doi: 10.2165/00003495-199141030-00007, PMID 1711446.
Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519-47. doi: 10.1208/s12248-011-9290-9, PMID 21818695.
Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11-23. doi: 10.1007/s11095-004-9004-4, PMID 15771225.
Zhang P, Ling G, Pan X, Zhang P, Ling G, Pan X, Sun J, Zhang T. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine Nanotechnology, Biol Med. 2012;8(2):185–93.
Mussi SV, Silva RC, Oliveira MC, Lucci CM, Azevedo RB, Ferreira LA. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci. 2013;48(1-2):282-90. doi: 10.1016/j.ejps.2012.10.025, PMID 23178339.
Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target. 2013 Jul 14;21(6):581-92. doi: 10.3109/1061186X.2013.778264, PMID 23484494.
Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U. Polymeric nanocarriers: A new horizon for the effective management of breast cancer. Curr Pharm Des. 2017;23(35):5315-26. doi: 10.2174/1381612823666170829164828, PMID 28875848.
Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121-8. doi: 10.1016/s0378-5173(02)00180-1, PMID 12176234.
Jain V, Kumar H, Chand P, Jain S, SP. Lipid‐based nanocarriers as drug delivery system and its applications. In: Nanopharmaceutical advanced delivery systems. Wiley; 2021. p. 1-29.
Doughty JC, Kane E, Cooke TG, McArdle CS. Mitoxantrone and methotrexate chemotherapy with and without mitomycin C in the regional treatment of locally advanced breast cancer. Breast. 2002;11(1):97-9. doi: 10.1054/brst.2001.0316, PMID 14965654.
Hagemeister F, Cabanillas F, Coleman M, Gregory SA, Zinzani PL. The role of mitoxantrone in the treatment of indolent lymphomas. Oncologist. 2005;10(2):150-9. doi: 10.1634/theoncologist.10-2-150, PMID 15709217.
Von Hoff DD, Pollard E, Kuhn J, Murray E, Coltman CA. Phase I clinical investigation of 1,4-dihydroxy-5,8-bis (((2-[(2-hydroxyethyl) amino] ethyl) amino))-9,10-anthracenedione dihydrochloride (NSC 301739), a new anthracenedione. Cancer Res. 1980 May;40(5):1516-8. PMID 7370989.
Shenkenberg TD, Von Hoff DD. Mitoxantrone: A new anticancer drug with significant clinical activity. Ann Intern Med. 1986 Jul 1;105(1):67-81. doi: 10.7326/0003-4819-105-1-67, PMID 3521429.
Lalhlenmawia H. formulation and in vitro evaluation of poly(d, l-lactide-co-glycolide) (plga) nanoparticles of ellagic acid and its effect on human breast cancer, mcf-7 cell line. Int J Curr Pharm Res 2021;13(5):56-62. doi: 10.22159/ijcpr.2021v13i5
Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol. 2020 Dec;60. doi: 10.1016/j.jddst.2020.102021, PMID 102021.
Du Q, Chen H. The methoxyflavones in Citrus reticulata Blanco cv. ponkan and their antiproliferative activity against cancer cells. Food Chem. 2010;119(2):567-72. doi: 10.1016/j.foodchem.2009.06.059.
Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.
Li Z, Cai Y, Zhao Y, Yu H, Zhou H, Chen M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int J Nanomedicine. 2017;12:6595-604. doi: 10.2147/IJN.S138235, PMID 28919756.
Lam P, Lin RD, Steinmetz NF. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B. 2018;6(37):5888-95. doi: 10.1039/C8TB01191E, PMID 30923616.
Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci. 2006;28(1-2):86-95. doi: 10.1016/j.ejps.2006.01.001, PMID 16472996.
Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, Chow EK. Nanodiamond − mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683-91. doi: 10.1021/mp5001108, PMID 24867631.
Ling G, Zhang T, Zhang P, Sun J, He Z. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm. 2016;42(8):1351-9. doi: 10.3109/03639045.2015.1135937, PMID 26754913.
Zhang LK, Hou SX, Zhang JQ, Hu WJ, Wang CY. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Arch Pharm Res. 2010;33(8):1193-8. doi: 10.1007/s12272-010-0809-x, PMID 20803122.
Sargazi A, Kamali N, Shiri F, Heidari Majd M. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Artif Cells Nanomed Biotechnol. 2018;46(3):500-9. doi: 10.1080/21691401.2017.1324462, PMID 28503952.
Wang C, Han M, Liu X, Chen S, Hu F, Sun J, Yuan H. Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and effective cancer therapy. Int J Nanomedicine. 2019;14:1503-17. doi: 10.2147/IJN.S193976, PMID 30880961.
Yoon JH, Cho HJ, Jin HE, Maeng HJ. Mitoxantrone-loaded pegylated gold nanocomplexes for cancer therapy. J Nanosci Nanotechnol. 2019;19(2):687-90. doi: 10.1166/jnn.2019.15902, PMID 30360142.
Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, Ho D, Chow EK. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11(8):2683-91. doi: 10.1021/mp5001108, PMID 24867631.
Development D, Pharmacy I. Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydro-chloride to enhance anticancer activity bypassing the BCRP-mediated efflux. 2015.
Stuart-Harris RC, Bozek T, Pavlidis NA, Smith IE Mitoxantrone: an active new agent in the treatment of advanced breast cancer. Cancer Chemother Pharmacol. 1984;12(1):1-4. doi: 10.1007/BF00255899. PMID 6690066.
Hendrick AM, Harris AL, Cantwell BMJ. Verapamil with mitoxantrone for advanced ovarian cancer: A negative phase II trial. Ann Oncol. 1991;2(1):71-2. doi: 10.1093/oxfordjournals.annonc.a057830.
Dunn CJ, Goa KL. Mitoxantrone: a review of its pharmacological properties and use in acute nonlymphoblastic leukaemia. Drugs Aging. 1996;9(2):122-47. doi: 10.2165/00002512-199609020-00007, PMID 8820798.
Ma S, Au K, Wan T, Chan L. Translocation in blastic transformation of atypical chronic myeloid leukemia. Leukemia. 1997;11(4):612-3. doi: 10.1038/sj.leu.2400612.
Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2005;106(4):1154-63. doi: 10.1182/blood-2005-01-0178, PMID 15870183.
Comella G, Casaretti R, Comella P, Antonio Daponte AP, Parziale A, Iervolino V, Santillo G, Zarrilli D. Treatment of advanced colorectal cancer with mitoxantrone, high dose folinic acid and fluorouracil. Tumori. 1991;77(5):445-6. doi: 10.1177/030089169107700515, PMID 1781041.
Fusi A, Procopio G, Della Torre S, Ricotta R, Bianchini G, Salvioni R, Ferrari L, Martinetti A, Savelli G, Villa S, Bajetta E. Treatment options in hormone-refractory metastatic prostate carcinoma. Tumori. 2004;90(6):535-46. doi: 10.1177/030089160409000601, PMID 15762353.
Hu OYP, Chang SP, Song YB, Chen KY, Law CK. Novel assay method for mitoxantrone in plasma, and its application in cancer patients. J Chromatogr B Biomed Sci Appl. 1990 Jan;532(2):337-50. doi: 10.1016/s0378-4347(00)83783-4, PMID 2084130.
Patel KJ, Tredan O, Tannock IF. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother Pharmacol. 2013;72(1):127-38. doi: 10.1007/s00280-013-2176-z, PMID 23680920.
Panousis C, Kettle AJ, Phillips DR. Neutrophil-mediated activation of mitoxantrone to metabolites which form adducts with DNA. Cancer Lett. 1997;113(1-2):173-8. doi: 10.1016/s0304-3835(97)04611-9, PMID 9065819.
Stuart Harris RC, Smith IE. Mitoxantrone: A phase II study in the treatment of patients with advanced breast carcinoma and other solid tumours. Cancer Chemother Pharmacol. 1982;8(2):179-82. doi: 10.1007/BF00255480, PMID 7105382.
Ehlllllger G, Schiller C, Proksch B, Zeller K, Blaf J. Dnoa Connect; 1990.
Smyth JF, Macpherson JS, Warrington PS, Leonard RCF, Wolf CR. The clinical pharmacology of mitozantrone. Cancer Chemother Pharmacol. 1986;17(2):149-52. doi: 10.1007/BF00306744, PMID 3719894.
Richard B, Fabre G, De Sousa G, Fabre I, Rahmani R, Cano JP. Interspecies variability in mitoxantrone metabolism using primary cultures of hepatocytes isolated from rat, rabbit and humans. Biochem Pharmacol. 1991;41(2):255-62. doi: 10.1016/0006-2952(91)90484-m, PMID 1989635.
Alberts DS, Peng YM, Leigh S, Davis TP, Woodward DL. Disposition of mitoxantrone in patients. Cancer Treal Rev Cancer Treat Rev. 1983;10Suppl B:23-7. doi: 10.1016/0305-7372(83)90018-x, PMID 6661732.
Chiccarelli FS, Morrison JA, Cosulich DB, Perkinson NA, Ridge DN, Sum FW, Murdock KC, Woodward DL, Arnold ET. Identification of human urinary mitoxantrone metabolites. Cancer Res. 1986;46(9):4858-61. PMID 3731132.
Richard B, Fabre G, Desousa G, Cano JP. Metabolism of mitoxantrone by hepatocytes in primary culture isolated from different species including man. Proc Am Assoc Cancer Res. 1987;28:1674.
Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519-47. doi: 10.1208/s12248-011-9290-9, PMID 21818695.
Batra VK, Morrison JA, Woodward DL, Siverd NS, Yacobi A. Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metab Rev. 1986;17(3-4):311-29. doi: 10.3109/03602538608998294, PMID 3552542.
Alberts DS, Peng Y, Leigh S, Davis TP, Woodward DL. Disposition of Mitoxantronein cancer patients. Cancer Res. 1985;45(4):1879-84.
Kilmer PD. Review aarticle: rreview aarticle. Journal Theory, Pract Crit Journalism. 2010;11(3):369-73. doi: 10.1177/1461444810365020.
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK. A multidrug resistance transporter from human MCF-7 breast cancer cells (mitoxantrone͞ anthracyclines͞ transporter proteins). Med Sci. 1998;95(Dec):15665-70.
Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 1999;59(1):8-13. PMID 9892175.
Zhu X, Wong ILK, Chan KF, Cui J, Law MC, Chong TC, Hu X, Chow LMC, Chan TH. Triazole bridged flavonoid dimers as potent, nontoxic, and highly selective breast cancer resistance protein (BCRP/ABCG2) inhibitors. J Med Chem. 2019 Sep 26;62(18):8578-608. doi: 10.1021/acs.jmedchem.9b00963, PMID 31465686.
Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. In. Methods Mol Biol. 2010;596:47-76. doi: 10.1007/978-1-60761-416-6_4, PMID 19949920.
Gerlach JH, Kartner N, Bell DR, Ling V. Multidrug resistance. Cancer Surv. 1986;5(1):25-46. PMID 2885085.
Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci. USA. 1986 Jun 1;83(12):4538-42. doi: 10.1073/pnas.83.12.4538, PMID 3459187.
Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989 Jun;58(1):137-71. doi: 10.1146/annurev.bi.58.070189.001033, PMID 2570548.
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48-58. doi: 10.1038/nrc706, PMID 11902585.
Gottesman MM, Pastan IH. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J Natl Cancer Inst. 2015 Sep 18;107(9):djv222. doi: 10.1093/jnci/djv222, PMID 26286731.
Schabel FM, Skipper HE, Trader MW, Laster WR, Griswold DP, Corbett TH. Establishment of cross-resistance profiles for new agents. Cancer Treat Rep. 1983;67(10):905-22. PMID 6354439.
Biedler JL, Spengler BA. Reverse transformation of multidrug-resistant cells. Cancer Metastasis Rev. 1994;13(2):191-207. doi: 10.1007/BF00689636, PMID 7923550.
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7(3):339-48. doi: 10.15171/apb.2017.041, PMID 29071215.
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998 Dec 22;95(26):15665-70. doi: 10.1073/pnas.95.26.15665, PMID 9861027.
Yuan JH, Cheng JQ, Jiang LY, JI WD, Guo LF, Liu JJ, Xu XY, He JS, Wang XM, Zhuang ZX. Breast cancer resistance protein expression and 5-fluorouracil resistance. Biomed Environ Sci. 2008 Aug;21(4):290-5. doi: 10.1016/S0895-3988(08)60044-6, PMID 18837291.
Austin Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003 Oct 23;22(47):7340-58. doi: 10.1038/sj.onc.1206938, PMID 14576842.
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012 Apr;83(8):1084-103. doi: 10.1016/j.bcp.2012.01.002, PMID 22248732.
Diah SK, Smitherman PK, Aldridge J, Volk EL, Schneider E, Townsend AJ, Morrow CS. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res. 2001;61(14):5461-7. PMID 11454692.
Hu J, Zhang H, Liu L, Han B, Zhou G, Su P. TRPS1 confers multidrug resistance of breast cancer cells by regulating BCRP expression. Front Oncol. 2020 Jun 30;10:934. doi: 10.3389/fonc.2020.00934, PMID 32695669.
Bolhuis H, van Veen HW, Poolman B, Driessen AJM, Konings WN. Mechanisms of multidrug transporters. FEMS Microbiol Rev. 1997 Aug;21(1):55-84. doi: 10.1111/j.1574-6976.1997.tb00345.x, PMID 9299702.
Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr. 2001;33(6):475-9. doi: 10.1023/a:1012823120935, PMID 11804189.
Henderson BM, Dougherty WJ, James VC, Tilley LP, Noble JF. Safety assessment of a new anticancer compound, mitoxantrone, in beagle dogs: comparison with doxorubicin. I. Clinical observations. Cancer Treat Rep. 1982;66(5):1139-43. PMID 7083216.
Each I, Agent AI, Code IATC, Saint-laurent TH. Revision P, no SC. Product monograph; 2014. p. 1-38. PMID 180582.
Van de Wyngaert FA, Beguin C, D’Hooghe MB, Dooms G, Lissoir F, Carton H, Sindic CJ. A double-blind clinical trial of mitoxantrone versus methylprednisolone in relapsing, secondary progressive multiple sclerosis. Acta Neurol Belg. 2001;101(4):210-6. PMID 11851027.
Millefiorini E, Gasperini C, Pozzilli C, D’Andrea F, Bastianello S, Trojano M, Morino S, Morra VB, Bozzao A, Calo’ A, Bernini ML, Gambi D, Prencipe M. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol. 1997;244(3):153-9. doi: 10.1007/s004150050066, PMID 9050955.
Dihydroxyanthracenedione SS. Drug name mitoxantrone. BC Cancer Drug Manual. 2019(May):1-9.
Posner LE, Dukart G, Goldberg J, Bernstein T, Cartwright K. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs. 1985;3(2):123-32. doi: 10.1007/BF00174159, PMID 3894276.
Arlin Z, Case DC Jr, Moore J, Wiernik P, Feldman E, Saletan S, Desai P, Sia L, Cartwright K. Randomized multicenter trial of cytosine arabinoside with mitoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Lederle Cooperative Group. Leukemia. 1990;4(3):177-83. PMID 2179638.
Garzotto M, Myrthue A, Higano CS, Beer TM. Neoadjuvant mitoxantrone and docetaxel for high-risk localized prostate cancer. Urol Oncol Semin Orig Investig. 2006;24(3):254-9. doi: 10.1016/j.urolonc.2005.11.034, PMID 16678060.
Smith IE, Stuart Harris R, Pavlidis N, Bozek TBT. Mitoxantrone (Novantrone) as single agent and in combination chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rev. 1983:37-40. doi: 10.1016/0305-7372(83)90020-8, PMID 6661733.
Yang J, Shi Y, Li C, Gui L, Zhao X, Liu P, Han X, Song Y, Li N, Du P, Zhang S. Phase I clinical trial of pegylated liposomal mitoxantrone plm60-s: pharmacokinetics, toxicity and preliminary efficacy. Cancer Chemother Pharmacol. 2014;74(3):637–-46. doi: 10.1007/s00280-014-2523-8, PMID 25034977.
Bezwoda WR, Dansey R, Seymour L. First-line chemotherapy of advanced breast cancer with mitoxantrone, cyclophosphamide and vincristine 1. Oncology. 1989;46(4):208-11. doi: 10.1159/000226717, PMID 2740063.
Bally Marcel B, Barber Lana W, Chang Charmaine W, Lim Howard J, Madden Thomas D. Liposomal Formulations Mitoxantrone; 1999.
Wei J Sun. Mingxing, [Mingxing St Juan; wei]. Mitoxantrone sustained-release implantation agent curing entity tumour; 2008.
Ming Pssnwyz, Classifications. Mesoporous silicon dioxide-methotrexate-mitoxantrone nanoparticles as well as preparation, activity and application thereof; 2018.
Qiang Lh, Pei Jin. Cardiolipin-containing new liposome preparation, and its application in antitumor drugs; 2014.
Cheng XF, Min Wang, Shujun Wang. Application of mitoxantrone as lymph tracer; 2012.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Preethi S; Hitesh Kumar, Vishal B Rawal; Vikas Jain, Ajmeer Ramkishan
This work is licensed under a Creative Commons Attribution 4.0 International License.