FORMULATION AND EVALUATION OF TWO CELASTROL NANOEMULSIONS PREPARED FROM TWO OILS: ISOPROPYL MYRISTATE AND VIRGIN COCONUT OIL

Authors

  • NUR ALAM ABDULLAH Student of Pharmaceutical Sciences, Faculty of Pharmacy, University of Indonesia
  • MAHDI JUFRI Department of Pharmaceutical Technology and Drug Development, Faculty of Pharmacy, University of Indonesia https://orcid.org/0000-0003-3084-5285
  • ABDUL MUN’IM Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, University of Indonesia
  • FADLINA CHANY SAPUTRI Departemen Pharmacology and Pharmacokinetics, University of Indonesia, Depok, 16424, University of Indonesia

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43509

Keywords:

Celastrol, Nanoemulsion, VCO, IPM, Particle size

Abstract

Objective: Celastrol, which is classified as BCS 4, needs to be developed into a nanoemulsion formula for a stable and good formulation. The aim of the study was to determine the in vitro penetration ability and adsorption efficiency (EE) between two different base oils, namely Isopropyl myristate (IPM) and virgin coconut. oil (VCO).

Methods: Two celastrol nanoemulsion formulas were prepared by high energy method using High share homogenizer (HSH) at 15,000 rpm for 15 min, using different oil-based components, F1 IPM and F2 VCO. Particle size, polydispersity index (PDI), D90, zeta potential, and morphology of nanoemulsions was evaluated. In vitro studies by Franz diffusion cell test method determined the difference.

Results: The results showed that celastrol can be formulated well with a ternary ratio of 5:45:50 for IPM and 20:30:50 for VCO. The absorption efficiency test for celestrol levels was 96.49%±2.72 for IPM and 76.53%±1.19 for VCO. The mean particle size, PDI, and zeta potential were 70.81±0.20 nm, 0.1±0.03, and 50.2±0.60 mV, for VCO and 186.23±3, respectively. 12 nm, 0.2±0.07, and 45.5±1.10 mV for HDI. Spherical morphology<200 nm. Franz diffusion in vitro at 20 and 24 h, celastrol is well penetrated at levels of 2.4 g/ml gram and 2.5 g/ml for HDI and at 2.0 g/ml gram and 2.4 g/ml, respectively. ml/gram for VCO.

Conclusion: Celastrol was successfully developed into nanoemulsions using IPM or VCO, particle size<200 nm, and stable spherical shape.

Downloads

Download data is not yet available.

References

Peng X, Wang J, Song H, Cui D, Li L, Li J, Lin L, Zhou J, Liu Y. Optimized preparation of celastrol-loaded polymeric nanomicelles using rotatable central composite design and response surface methodology. J Biomed Nanotechnol. 2012;8(3):491-9. doi: 10.1166/jbn.2012.1398, PMID 22764419.

Kang Q, Liu J, Zhao Y, Liu X, Liu XY, Wang YJ, Mo NL, Wu Q. Transdermal delivery system of nanostructured lipid carriers loaded with celastrol and indomethacin: optimization, characterization and efficacy evaluation for rheumatoid arthritis. Artif Cells Nanomed Biotechnol. 2018;46(Suppl3):S585-97. doi: 10.1080/21691401.2018.1503599, PMID 30306802.

Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28-49. doi: 10.1016/j.jconrel.2017.03.008.

Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions-advances in formulation, characterization and applications in drug delivery; 2014. doi: 10.5772/58673.

Rowe RC, Sheskey PJ, Quin ME. Handbook of pharmaceutical excipients; 2009.

Arellano A, Santoyo S, Martin C, Ygartua P. Influence of propylene glycol and isopropyl myristate on the in vitro percutaneous penetration of diclofenac sodium from carbopol gels. Eur J Pharm Sci. 1999;7(2):129-35. doi: 10.1016/S0928-0987(98)00010-4, PMID 9845796.

Nanotechnology in Drug Delivery. In: Recent Advances in Novel Drug Carrier Systems; 2009. p. 663. doi: 10.5772/51384.

Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech. 2007;8(2):E12-E17. doi: 10.1208/pt0802028, PMID 17622106.

Maha E Elmataeeshy, M Sokar, M Bahey-El-Din, D Shaker. Enhanced transdermal permeability of terbinafine through novelnanoemulgel formulation development in vitro and in vivo characterization. Future Journal of Pharmaceutical Sciences 2018;4(1):18-28. doi: 10.1016/j.fjps.2017.07.003.

Syed HK, Peh KK. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram; 2014. p. 301-9. doi: 10.1109/CEC.2002.1007011.

Kesumawardhany B, Mita SR. Pengaruh penambahan tween 80 sebagai enhancer dalm sediaan transdermal effects of tween 80 as an enhancer in transdermal dosage form. Farmaka 2016;14(2):1-11. doi: org/10.24198/jf.v14i2.9293

Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res. 2012;3(3):142-6. doi: 10.4103/2231-4040.101006, PMID 23057000.

Dos Santos Ramos MA, Da Silva PB, Sposito L, De Toledo LG, Bonifacio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179-213. doi: 10.2147/IJN.S146195. PMID 29520143.

Sari TP. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids. 2015;43:540-6. doi: foodhyd.2014.07.011.

Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as the pharmaceutical carrier for dermal and transdermal drug delivery. 2018;370:203-25. doi: 10.1016/j. jconrel.2017.11.049.

Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnology. 2008;6:8. doi: 10.1186/1477-3155-6-8, PMID 18613981.

Al-shaibania AJN, Al-gburib KMH, Albo Hamraha KTK, Abd Alridhab AM. Design and characterization of candesartan cilexetil oral nanoemulsion containing garlic oil. Int J Appl Pharm. 2019;11(6):116-24. doi: 10.22159/ ijap.2019v11i6.35066.

Choudhury H. Recent update on nanoemulgel as topical. Drug Deliv Syst. 2017;2017:1736-51. doi: 10.1016/j.xphs.2017.03.042.

Ahmad M, Sahabjada, Akhtar J, Hussain A, Badaruddeen, Arshad M, Mishra A. Development of a new rutin nanoemulsion and its application on prostate carcinoma PC3 cell line. EXCLI J. 2017;16:810-23. doi: 10.17179/excli2016-668, PMID 28694767.

Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M, Talegaonkar S. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69-76. doi: 10.1208/s12249-008-9178-x, PMID 19148761.

Chiesa M, Garg J, Kang YT, Chen G. Thermal conductivity and viscosity of water-in-oil nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;326(1-2):67-72. doi: colsurfa.2008.05.028.

Rave MC, Echeverri JD, Salamanca CH. Improvement of the physical stability of oil-in-water nanoemulsions elaborated with sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering. 2020;273:109801. doi: 10.1016/j.jfoodeng.2019.109801.

Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J. How to prepare and stabilize very small nanoemulsions. Langmuir. 2011;27(5):1683-92. doi: 10.1021/la104221q, PMID 21226496.

Jeong SW, Locat J, Torrance JK, Leroueil S. Thixotropic and anti-thixotropic behaviors of fine-grained soils in various flocculated systems. Engineering Geology. 2015;196:119-25. doi: . enggeo.2015.07.014.

Maha HL, Sinaga KR, Sinaga KR, Masfria M, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res. 2018;11(3):319-21. doi: 10.22159/ajpcr.2018.v11i3.22056.

Anwar C. Changes in yield and quality of virgin coconut oil (VCO) at various rotational speeds and length of centrifugation time; 2016. p. 51–60. doi: 10.24198.jt.vol10n2.8.

Helgeson ME. Colloidal behavior of nanoemulsions: interactions, structure, and rheology. Curr Opin Colloid Interface Sci. 2016;25:39-50. doi: 10.1016/j.cocis.2016.06.006.

Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43(2-3):85-103. doi: 10.1016/j.micron.2011.07.014. PMID 21839644.

Sun H, Liu K, Liu W, Wang W, Guo C, Tang B, Gu J, Zhang J, Li H, Mao X, Zou Q, Zeng H. Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. Int J Nanomedicine. 2012;7:5529-43. doi: 10.2147/IJN.S36071. PMID 23118537.

Yukuyama MN. Olive oil nanoemulsion preparation using high-pressure homogenization and d-phase emulsification– A design space approach. J Drug Deliv Sci Technol. 2019;49:622-31. doi: 10.1016/j.jddst.2018.12.029. jddst.2018.12.029.

Klang V, Matsko N, Raupach K, El-Hagin N, Valenta C. Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. Eur J Pharm Biopharm. 2011;79(1):58-67. doi: 10.1016/j.ejpb.2011.01.010.ejpb.2011.01.010.

Ghiasi Z, Esmaeli F, Khansari MG, Faramarzi MA, Amani A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: an in vivo study department of medical nanotechnology, school of advanced technologies in medicine, tehran university of medical sciences, Tehran. Int J Pharm. 2019. doi: 10.1016/j. ijpharm.2019.01.043.

Salamanca CH, Barrera Ocampo A, Lasso JC, Camacho N, Yarce CJ. Franz diffusion cell approach for pre-formulation characterization of ketoprofen semi-solid dosage forms. Pharmaceutics. 2018;10(3):1-10. doi: 10.3390/pharmaceutics 10030148, PMID 30189634.

Published

07-03-2022

How to Cite

ABDULLAH, N. A., JUFRI, M., MUN’IM, A., & SAPUTRI, F. C. (2022). FORMULATION AND EVALUATION OF TWO CELASTROL NANOEMULSIONS PREPARED FROM TWO OILS: ISOPROPYL MYRISTATE AND VIRGIN COCONUT OIL. International Journal of Applied Pharmaceutics, 14(2), 267–275. https://doi.org/10.22159/ijap.2022v14i2.43509

Issue

Section

Original Article(s)