ENHANCED SULFATED EXOPOLYSACCHARIDE PRODUCTION IN PORPHYRIDIUM PURPUREUM FROM INDONESIA: IMPACT OF CULTURE MEDIUM AND DURATION
DOI:
https://doi.org/10.22159/ijap.2024.v16s3.05Keywords:
Duration, Medium, Porphyridium purpureum, Sulfated exopolysaccharideAbstract
Objective: This study investigates the influence of culture medium (Walne and F/2) and culture duration (14 ds and 28 ds) on sulfated Exopolysaccharide (EPS) production in Porphyridium purpureum from Indonesia. EPS sulfate has significant biotechnological potential due to its versatile applications, including in nanotechnological applications and optimizing cultivation conditions is essential to maximize yields.
Methods: Cultures of P. purpureum were subjected to two distinct culture media, Walne and F/2, and maintained for two different durations, 14 ds and 28 ds. The microalgal biomass was harvested, and sulfated EPS was extracted using established methods. Statistical analysis was employed to assess the significance of differences between the cultural conditions. The novelty of this study lies in the comprehensive examination of the interactive effects of culture medium composition and duration on sulfated EPS production in P. purpureum. The findings contribute to our understanding of the dynamic responses of P. purpureum to different culture environments.
Results: The results of this research reveal a significant increase in sulfated EPS production in the 28 d culture compared to the 14 d culture.
Conclusion: This outcome underscores the importance of prolonged culture durations for achieving higher yields of sulfated EPS in P. purpureum.
Downloads
References
Schoeters F, Spit J, Swinnen E, De Cuyper A, Vleugels R, Noyens I. Pilot-scale cultivation of the red alga porphyridium purpureum over a 2 y period in a greenhouse. J Appl Phycol. 2023;35(5):2095-109. doi: 10.1007/s10811-023-03045-5.
Vecchi V, Barera S, Bassi R, Dall’osto L. Potential and challenges of improving photosynthesis in algae. Plants (Basel). 2020;9(1):67. doi: 10.3390/plants9010067, PMID 31947868.
Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Fact. 2018;17(1):173. doi: 10.1186/s12934-018-1019-3. PMID 30414618.
Bhalamurugan GL, Valerie O, Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res. 2018;23(3):229-41. doi: 10.4491/eer.2017.220.
Wang WN, Li Y, Zhang Y, Xiang WZ, Li AF, Li T. Comparison on characterization and antioxidant activity of exopolysaccharides from two porphyridium strains. J Appl Phycol. 2021;33(5):2983-94. doi: 10.1007/s10811-021-02518-9.
Kocer AT, Inan B, Kaptan Usul S, Ozcimen D, Yılmaz MT, Isıldak I. Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol. 2021;52(4):1779-90. doi: 10.1007/s42770-021-00575-3, PMID 34510399.
Mousavian Z, Safavi M, Azizmohseni F, Hadizadeh M, Mirdamadi S. Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae. AMB Express. 2022;12(1):27. doi: 10.1186/s13568-022-01365-2, PMID 35239029.
Bayu A, Noerdjito DR, Rahmawati SI, Putra MY, Karnjanakom S. Biological and technical aspects on valorization of red microalgae genera porphyridium. Biomass Conv Bioref. 2023;13(14):12395-411. doi: 10.1007/s13399-021-02167-5.
Gălan AM, Vlaicu A, Vintila AC, Ciltea Udrescu M, Cerchezan G, Frone AN. Microalgae strain Porphyridium purpureum for nutrient reduction in dairy wastewaters. Sustainability. 2022;14(14):8545. doi: 10.3390/su14148545.
Gulati K, Reshi MR, Rai N, Ray A. Hepatotoxicity: its mechanisms, experimental evaluation and protective strategies. American Journal of Pharmacology. 2018;1(1):1-9.
Li T, Xu J, Wu H, Jiang P, Chen Z, Xiang W. Growth and biochemical composition of porphyridiumpurpureum SCS-02 under different nitrogen concentrations. Mar Drugs. 2019;17(2):124. doi: 10.3390/md17020124, PMID 30791567.
Zhang AH, Feng B, Zhang H, Jiang J, Zhang D, Du Y. Efficient cultivation of Porphyridium purpureum integrated with swine wastewater treatment to produce phycoerythrin and polysaccharide. J Appl Phycol. 2022;34(5):2315-26. doi: 10.1007/s10811-022-02785-0.
Razaghi A, Godhe A, Albers E. Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Open Life Sciences. 2014;9(2):156-62. doi: 10.2478/s11535-013-0248-z.
Endar V, Sarjito HJ, Prayitno B. Effect of using gillard and walne technical culture media on growth and fatty acid profiles of microalgae skeletonema sp. in mass culture. J Coast Dev. 2013;16(1):50-6.
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C. New horizons in culture and valorization of red microalgae. Biotechnol Adv. 2019;37(1):193-222. doi: 10.1016/j.biotechadv.2018.11.014, PMID 30500354.
Yaakob MA, Mohamed RM, Al-Gheethi A, Aswathnarayana Gokare R, Ambati RR. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2):1-19. doi: 10.3390/cells10020393, PMID 33673015.
Li S, Ji L, Chen C, Zhao S, Sun M, Gao Z. Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol. 2020;309:123362. doi: 10.1016/j.biortech.2020.123362, PMID 32305848.
Li S, Huang J, Ji L, Chen C, Wu P, Zhang W. Assessment of light distribution model for marine red microalga porphyridium purpureum for sustainable production in photobioreactor. Algal Res. 2021;58. doi: 10.1016/j.algal.2021.102390.
Huang Z, Zhong C, Dai J, Li S, Zheng M, He Y. Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation. Algal Res. 2021;55:102270. doi: 10.1016/j.algal.2021.102270.
Published
How to Cite
Issue
Section
Copyright (c) 2024 DEVI MAULINA, ABDUL MUN’IM, ASEP BAYU, HERI SETIAWAN, DIAH RADINI NOERDJITO
This work is licensed under a Creative Commons Attribution 4.0 International License.