IMPLEMENTATION OF FACTORIAL DESIGN TO OPTIMIZE THE FORMULATION METHOD OF EZETIMIBE POLYMERIC NANOPARTICLE BY HOMOGENIZATION CUM ULTRA-SONICATION METHOD

Authors

  • BALA NAGAMANI D. Jawaharlal Nehru Technological University Anantapur, Anantapur, Andhra Pradesh, India https://orcid.org/0000-0002-4579-5420
  • BHASKAR REDDY K. Department of Pharmaceutics, Sri Venkateswara College of Pharmacy, RVS Nagar, Chittoor-517127, Andhra Pradesh, India
  • SESHA MAHESWARAMMA K. Department of Chemistry, JNTUA College of Engineering (Autonomous), Pulivendula 516390, Andhra Pradesh, India
  • BRITO RAJ S. Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Chettinad Health city, Kelambakkam 603103, Chengalpattu District, Tamilnadu, India https://orcid.org/0000-0001-5987-3031

DOI:

https://doi.org/10.22159/ijap.2022v14i2.43783

Keywords:

Optimization, Ezetimibe, Polymeric Nanoparticle, 23 factorial design, Homogenization, Ultrasonication

Abstract

Objective: The objective of this study is to use a 23 factorial design to optimize the formulation factors of Ezetimibe polymeric nanoparticle.

Methods: By varying formulation variables such as polymer concentration (hydroxyl propyl methyl cellulose composition) and process variables such as homogenization time (min) and ultra-sonication time, the formulation of polymeric nanoparticles was designed using a 23 factorial design and prepared using the homogenization cum ultra-sonication method (min). Particle size (nm), zeta potential (mV), polydispersity index, entrapment efficiency (%), drug content, in vitro drug release, in vitro release kinetic studies, and stability studies were used to analyse and optimize polymeric nanoparticles according to ICH criteria.

Results: R7 formulation showed predicted and desired less particle size 87.0±3.64 nm; maximum zeta potential-33.4±2.32 mV; desired polydispersity index 0.488±0.20; maximum entrapment efficiency of 96.45±2.42 % and controlled dissolution release pattern of about 90.42±3.56% in 24h.

Conclusion: The polymeric nanoparticle was formulated and optimized by the parameters like Particle Size (PS in nm), Polydispersity Index (PI), Zeta potential (Zp in mV), % Entrapment Efficiency and in vitro drug release for 24 h were evaluated. These parameters showed significant changes while formulating polymeric nanoparticles along with various formulation and process variables. From the release pattern data it was observed that PNs show a significant improvement of dissolution character of Ezetamibe. According to the findings, PNs have a controlled drug release pattern and can be used as a suitable drug delivery carrier for low solubility and poorly bioavailable drugs like Ezetamibe to improve its dissolution.

Downloads

Download data is not yet available.

References

Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl. 2017;80:771-84. doi: 10.1016/j.msec.2017.06.004, PMID 28866227.

Douglas D. Pharmaceutical nanotechnology: a therapeutic revolution. Int J Pharm Sci Dev Res. 2020;6(1):9-11. doi: 10.17352/ijpsdr.000027.

Mandic B, Savic Radojevic A, Simic T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Avramovi cN. Pharmaceutics. 2020;12:298.

Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci. 2012;1(4):217-23. doi: 10.4103/2278-344X.107832.

Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. In: Application of nanotechnology in drug delivery. Vol. 8. London, UK: IntechOpen; 2014.

Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147-57. doi: 10.1177/117739280700200002, PMID 21901071.

Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as an emerging tool for enhancing solubility of poorly water-soluble drugs. Bio Nano Science 2012;2:227-50.

Vasile C. Polymeric nanomaterials in nanotherapeutics. London, UK: Elsevier; 2018.

Tulain UR, Mahmood A, Aslam S, Erum A, Shamshad Malik N, Rashid A, Kausar R, Alqahtani MS. Formulation and evaluation of linum usitatissimum mucilage-based nanoparticles for effective delivery of ezetimibe. Int J Nanomedicine. 2021;16:4579-96. doi: 10.2147/IJN.S308790, PMID 34267514.

Din Fu, Zeb A, Shah KU, Zia-ur-Rehman. Development, in vitro and in vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product, Zia-ur-Rehmanc. J Drug Deliv Sci Technol. 2019;51:583-90. doi: 10.1016/j.jddst.2019.02.026.

Mendhe AA, Kharwade RS, Mahajan UN. Dissolution enhancement of poorly water-soluble drug by cyclodextrins inclusion complexation. Int J Appl Pharm. 2016;8:60-5.

Escalona Rayo O, Fuentes Vazquez P, Jardon Xicotencatl S, Garcia Tovar CG, Mendoza Elvira S, Quintanar Guerrero D. Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: optimization of formulation variables and in vitro anti-glioma assessment. J Drug Deliv Sci Technol. 2019;52:488-99. doi: 10.1016/j.jddst.2019.05.026.

Kunam V, Suryadevara V, Garikapati DR, Mandava VBR, Sasidhar R. Solubility and dissolution rate enhancement of ezetimibe by solid dispersion and pelletization techniques using soluplus as carrier. Int J App Pharm. 2019;11:57-64. doi: 10.22159/ijap.2019v11i4.32274.

Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in vitro drug release and release kinetic study. Nano Converg. 2016;3(1):3. doi: 10.1186/s40580-016-0061-2, PMID 28191413.

Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release. 2015;219:536-47. doi: 10.1016/ j.jconrel.2015.10.006, PMID 26450667.

Zielińska A, Ferreira NR, Durazzo A, Lucarini M, Cicero N, Mamouni SE, Silva AM, Nowak I, Santini A, Souto EB. Development and optimization of alpha-pinene-loaded solid lipid nanoparticles (SLN) using experimental factorial design and dispersion analysis. Molecules. 2019;24(15):2683. doi: 10.3390/molecules24152683, PMID 31344802.

Ziaee A, Albadarin AB, Padrela L, Femmer T, O’Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300-18. doi: 10.1016/j.ejps.2018.10.026, PMID 30428336.

Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-934. doi: 10.1039/c8nr02278j, PMID 29926865.

Dazon C, Witschger O, Bau S, Fierro V, Llewellyn PL. Nanomaterial identification of powders: comparing volume-specific surface area, X-ray diffraction and scanning electron microscopy methods. Environ Sci.: Nano. 2019;6(1):152-62. doi: 10.1039/C8EN00760H.

Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019;47(1):524-39. doi: 10.1080/21691401.2018.1561457, PMID 30784319.

Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision-making approach. Adv Pharm Bull. 2015;5(1):57-67. doi: 10.5681/apb.2015.008, PMID 25789220.

Cañadas C, Alvarado H, Calpena AC, Silva AM, Souto EB, Garcia ML, Abrego G. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int J Pharm. 2016;511(2):719-27. doi: 10.1016/j.ijpharm.2016.07.055, PMID 27480398.

Sanchez Lopez E, Egea MA, Cano A, Espina M, Calpena AC, Ettcheto M, Camins A, Souto EB, Silva AM, García ML. Pegylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces. 2016;145:241-50. doi: 10.1016/j.colsurfb.2016.04.054, PMID 27187188.

Sanchez Lopez E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, Garcia ML. Memantine loaded PLGA pegylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnology. 2018;16(1):32. doi: 10.1186/s12951-018-0356-z, PMID 29587747.

Martinez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige Gerges H, Nazari QA, Galindo Rodriguez SA, Roman RA, Fessi H, Elaissari A. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532(1):66-81. doi: 10.1016/j.ijpharm.2017.08.064, PMID 28801107.

Chidambaram M, Krishnasamy K. Modifications to the conventional nanoprecipitation technique: an approach to fabricate narrow-sized polymeric nanoparticles. Adv Pharm Bull. 2014;4(2):205-8. doi: 10.5681/apb.2014.030, PMID 24511486.

Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-934. doi: 10.1039/c8nr02278j, PMID 29926865.

Yang Y, Jiang Y, Xu J, Yu J. Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance. Polymer. 2007;48(15):4459-65. doi: 10.1016/j.polymer.2007.06.005.

Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SV, Moon D. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A. 2013;31(5):50820. doi: 10.1116/1.4818423, PMID 24482557.

Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision-making approach. Adv Pharm Bull. 2015;5(1):57-67. doi: 10.5681/apb.2015.008, PMID 25789220.

Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429-44. doi: 10.1517/17425241003602259, PMID 20331353.

Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol. 2020;3(1):95. doi: 10.1038/s42003-020-0817-4, PMID 32127636.

Zielińska A, Ferreira NR, Feliczak Guzik A, Nowak I, Souto EB. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm Dev Technol. 2020;25(7):1–13832-44. doi: 10.1080/ 10837450.2020.1744008, PMID 32204628.

Published

07-03-2022

How to Cite

NAGAMANI D., B., REDDY K., B., MAHESWARAMMA K., S., & RAJ S., B. (2022). IMPLEMENTATION OF FACTORIAL DESIGN TO OPTIMIZE THE FORMULATION METHOD OF EZETIMIBE POLYMERIC NANOPARTICLE BY HOMOGENIZATION CUM ULTRA-SONICATION METHOD. International Journal of Applied Pharmaceutics, 14(2), 151–159. https://doi.org/10.22159/ijap.2022v14i2.43783

Issue

Section

Original Article(s)

Most read articles by the same author(s)