NIOSOMES VERSUS PRONIOSOMES AS PROMISING DRUG DELIVERY SYSTEMS IN TREATMENT OF DIABETES MELLITUS

Authors

  • MAHMOUD H. TEAIMA Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt https://orcid.org/0000-0002-7565-301X
  • MOSTAFA I. GEBRIL Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt https://orcid.org/0000-0003-4207-5396
  • FATHY I. ABD ALLAH International Center for Bioavailability, Pharmaceutical and Clinical Research, Obour City 11828, Egypt, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
  • MOHAMED A. EL-NABARAWI Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt https://orcid.org/0000-0003-0070-1969

DOI:

https://doi.org/10.22159/ijap.2022v14i5.44039

Keywords:

Diabetes Mellitus (DM), Niosomes, Proniosomes, Ethosomes, Nanoparticles

Abstract

Diabetes Mellitus (DM) has emerged as an epidemic that has affected millions of people globally in the last few decades. Conventional antidiabetic dosage forms have a lot of problems that necessitate searching for novel drug delivery systems to overcome these drawbacks. Niosomes and proniosomes have been used to carry a wide variety of antidiabetic drugs achieving controlled and sustained release, which improves patient compliance. This review article describes the fundamental aspects of niosomes and proniosomes, including their structural components, methods of preparation, advantages and drawbacks, characterization, factors affecting niosomes formation along with their application in the treatment of diabetes. It also highlights the participation of other drug delivery systems in the treatment of diabetes done, mainly in the last decade.

Downloads

Download data is not yet available.

References

Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8):1-20. doi: 10.3390/molecules25081987, PMID 32340373.

Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv. 2018;36(6):1738-67. doi: 10.1016/ j.biotechadv.2017.12.015, PMID 29289692.

Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R. Treatment strategies against diabetes: success so far and challenges ahead. Eur J Pharmacol. 2019;862(Aug):172625. doi: 10.1016/j.ejphar.2019.172625. PMID 31449807.

Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557-70. doi: 10.1016/j.addr. 2011.12.009. PMID 22212900.

Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv. 2016;23(7):2371-90. doi: 10.3109/10717544.2014.991001, PMID 25544604.

Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM. Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett. 2017;12(1):500. doi: 10.1186/s11671-017-2249-8, PMID 28819800.

Bochot A, Fattal E. Liposomes for intravitreal drug delivery: A state of the art. J Control Release. 2012;161(2):628-34. doi: 10.1016/j.jconrel.2012.01.019, PMID 22289436.

Ahmad MZ, Akhter S, Mohsin N, Abdel-Wahab BA, Ahmad J, Warsi MH. Transformation of curcumin from food additive to multifunctional medicine: nanotechnology bridging the gap. Curr Drug Discov Technol. 2014;11(3):197-213. doi: 10.2174/1570163811666140616153436, PMID 24934264.

Kamel R, Basha M, Abd El-Alim SH. Development of a novel vesicular system using a binary mixture of sorbitan monostearate and polyethylene glycol fatty acid esters for rectal delivery of rutin. J Liposome Res. 2013;23(1):28-36. doi: 10.3109/08982104.2012.727422, PMID 23083098.

Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv. 2017;24(Suppl1):56-69. doi: 10.1080/10717544.2017.1384520, PMID 29130758.

Care D, Suppl SS. Classification and diagnosis of diabetes: standards of medical care in diabetesd 2018. Diabetes Care. 2018;41(Jan):S13-27.

Zaric BL, Obradovic M, Sudar Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug delivery systems for diabetes treatment. Curr Pharm Des. 2019;25(2):166-73. doi: 10.2174/1381612825666190306153838, PMID 30848184.

Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8(Jan):6. doi: 10.3389/fendo.2017.00006, PMID 28167928.

Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840-8. doi: 10.5114/aoms.2015.53304, PMID 26322096.

Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol. 2018;48(1):52-108. doi: 10.1080/10408444.2017.1351420, PMID 28816105.

Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87-100. doi: 10.3109/10717544.2013.838077, PMID 24156390.

Ammar HO, Haider M, Ibrahim M, El Hoffy NM. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414-21. doi: 10.1080/10717544.2016.1259371, PMID 28165822.

Arafa MG, Ghalwash D, El-kersh DM, Elmazar MM. Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci Rep. 2018;8(1 Nov). doi: 10.1038/s41598-018-37157-7, PMID 30575794.

Salem HF, Kharshoum RM, Abou-Taleb HA, Farouk HO, Zaki RM. Fabrication and appraisal of simvastatin via tailored niosomal nanovesicles for transdermal delivery enhancement: in vitro and in vivo assessment. Pharmaceutics. 2021;13(2):1-25. doi: 10.3390/pharmaceutics13020138, PMID 33494472.

Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull. 2016;73(5):1229-45. doi: 10.1007/s00289-015-1544-8.

Fathalla D, Fouad EA, Soliman GM. Latanoprost niosomes as a sustained release ocular delivery system for the management of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806-13. doi: 10.1080/03639045.2020.1755305, PMID 32281424.

Abdelbary GA, Amin MM, Zakaria MY. Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017;24(1):309-19. doi: 10.1080/10717544.2016.1247928, PMID 28165809.

Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in vitro characterization, and in vivo pharmacodynamic study. Drug Deliv. 2019;26(1):509-21. doi: 10.1080/10717544. 2019.1609622, PMID 31090464.

Ag Seleci DA, Seleci M, Walter J, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. Journal of Nanomaterials. 2016;2016(fig. 1). doi: 10.1155/2016/7372306.

Aher P, Dandgavhal K, Bhandari D, Saindane H, Deore N, Amrutkar S. Niosomes as a potential drug delivery system. IJPSRR. 2021;68(1):21-7. doi: 10.47583/ ijpsrr.2021.v68i01.004.

Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671-89. doi: 10.3109/10611860903079454, PMID 19845484.

Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56(Jan):101581. doi: 10.1016/j.jddst.2020.101581.

Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O. Nano-formulations for transdermal drug delivery: a review. Chin Chem Lett. 2018;29(12):1713-24. doi: 10.1016/j.cclet.2018.10.037.

Yeo PL, Lim CL, Chye SM, Kiong Ling APK, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 2018;11(4):301-14. doi: 10.1515/abm-2018-0002.

Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185(1):22-36. doi: 10.1016/j.jconrel.2014.04.015, PMID 24747765.

Khoee S, Yaghoobian M. Niosomes: a novel approach in modern drug delivery systems. Elsevier Inc; 2017. p. 207-37. doi: 10.1016/B978-0-323-46143-6/00006-3.

Waddad AY, Abbad S, Yu F, Munyendo WLL, Wang J, Lv H. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm. 2013;456(2):446-58. doi: 10.1016/j.ijpharm.2013.08.040, PMID 23998955.

Nasr M, Mansour S, Mortada ND, Elshamy AA. Vesicular aceclofenac systems: A comparative study between liposomes and niosomes. J Microencapsul. 2008;25(7):499-512. doi: 10.1080/02652040802055411, PMID 18608811.

Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS. Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci. 2010;99(5):2386-98. doi: 10.1002/jps.22007, PMID 19967780://www.ncbi.nlm.nih.gov/ pubmed/19967780.

Saraswathi TS, Mothilal M, Jaganathan MK. Niosomes as an emerging formulation tool for drug delivery-a review. Int J Appl Pharm. 2019;11(2):7-15.

Uchegbu IF, Vyas SP. Non-ionic surfactant-based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics. 1998;172(1-2):33-70. doi: 10.1016/S0378-5173(98)00169-0.

Ammar HO, Ghorab M, El-Nahhas SA, Higazy IM. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int J Pharm. 2011;405(1-2):142-52. doi: 10.1016/j.ijpharm.2010.11.003. PMID 21129461.

Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol. 2021;61. doi: 10.1016/j.jddst.2020.102234.

Gharbavi M, Amani J, Kheiri Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through the blood-brain barrier. Adv Pharmacol Sci. 2018;2018:6847971. doi: 10.1155/2018/6847971, PMID 30651728.

Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater Polym Biomater. 2018;67(6):383-400. doi: 10.1080/00914037.2017.1332623.

Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014;205:187-206. doi: 10.1016/j.cis.2013.11.018. PMID 24369107.

Manconi M, Sinico C, Valenti D, Loy G, Fadda AM. Niosomes as carriers for tretinoin. I. Preparation and properties. Int J Pharm. 2002;234(1-2):237-48. doi: 10.1016/s0378-5173(01)00971-1, PMID 11839454.

Uchegbu IF, Duncan R. Niosomes containing N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin (PK1): effect of method of preparation and choice of surfactant on niosome characteristics and a preliminary study of body distribution. International Journal of Pharmaceutics. 1997;155(1):7-17. doi: 10.1016/S0378-5173(97)00141-5.

Thabet Y, Elsabahy M, Eissa NG. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods. 2022;199:9-15. doi: 10.1016/j.ymeth.2021.05.004. PMID 34000392.

Yaghoobian M, Haeri A, Bolourchian N, Shahhosseni S, Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int J Nanomedicine. 2020;15:8767-81. doi: 10.2147/IJN.S261932, PMID 33204087.

Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in vitro characterization and in vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1254-64. doi: 10.1080/03639045.2017.1310224, PMID 28330377.

Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144(Aug):18-39. doi: 10.1016/j.ejpb.2019.08.015, PMID 31446046.

Patel P, Barot T, Kulkarni P. Formulation, Characterization and in vitro and in vivo evaluation of capecitabine loaded niosomes. Curr Drug Deliv. 2020;17(3):257-68. doi: 10.2174/1567201817666200214111815, PMID 32056523.

A RZM, B KD, C RBB. Niosomal drug delivery SYSTEM–a review academic sciences; 2011.

Bendas ER, Abdullah H, El-Komy MHM, Kassem MAA. Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. Int J Pharm. 2013;458(2):287-95. doi: 10.1016/j.ijpharm.2013.10.042, PMID 24184035.

Kusuma Priya MD, Kumar V, Damini VK, Eswar K, Reddy KR, Brito Raj S. Somes: a review on composition, formulation methods and evaluations of different types of ’somes’ drug delivery system. Int J Appl Pharm. 2020;12(6):7-18.

Bhattacharya S, Kumar N, Singhai M, Setia A, Chaudhary A, Sagar S. Preparation and evaluation of diclofenac sodium niosomes using round bottom flask method. Asian J Pharm. 2020;14(2):188-94.

Talsma H, Van Steenbergen MJ, Borchert JCH, Crommelin DJA. A novel technique for the one‐step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas stream: the ’Bubble’ method. J Pharm Sci. 1994;83(3):276-80. doi: 10.1002/jps.2600830303, PMID 8207668.

More VV, Gilhotra RM, Nitalikar MM, Khule PK. Niosomal drug delivery-A comprehensive review. Asian J Pharm. 2018 Oct 1;12:S1159-64.

Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci. 2010;23(1):103-7. PMID 20067875.

Mozafari MR. A new technique for the preparation of nontoxic liposomes and nanoliposomes: the heating method. Nanoliposomes Fundam Recent Dev. 2005:91-8.

Mozafari MR, Reed CJ, Rostron C. Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie. 2007;62(3):205-9. PMID 17416197.

Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E. Construction of stable anionic liposome-plasmid particles using the heating method: A preliminary investigation. Cell Mol Biol Lett. 2002;7(3):923-7. PMID 12378277.

Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: A controlled and novel drug delivery system. Biol Pharm Bull. 2011;34(7):945-53. doi: 10.1248/bpb.34.945, PMID 21719996.

Paecharoenchai O, Teng L, Yung BC, Teng L, Opanasopit P, Lee RJ. Nonionic surfactant vesicles for delivery of RNAi therapeutics. Nanomedicine (Lond). 2013;8(11):1865-73. doi: 10.2217/nnm.13.155, PMID 24156490.

El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm. 2011;77(1):43-55. doi: 10.1016/j.ejpb.2010.10.011, PMID 21056658.

El Maghraby GM, Ahmed AA, Osman MA. Penetration enhancers in proteasomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J. 2015;23(1):67-74. doi: 10.1016/j.jsps.2014.05.001. PMID 25685045.

Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res. 2016;6(5):511-8. doi: 10.1007/s13346-016-0296-9, PMID 27255375.

Shaker DS. Bioavailability and hypocholesterolemic effect of proniosomal simvastatin for transdermal delivery. Int J Pharm Pharm Sci. 2013;5(4):344-51.

Rahman SA, Abdelmalak NS, Badawi A, Elbayoumy T, Sabry N, El Ramly A. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in vitro characterization, skin irritation test and comparative clinical study. Drug Deliv. 2015;22(6):731-9. doi: 10.3109/10717544.2014.896428, PMID 24670094.

Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2). doi: 10.3390/pharmaceutics11020055, PMID 30700021.

Yasam VR, Jakki SL, Natarajan J, Kuppusamy G. A review on novel vesicular drug delivery: proniosomes. Drug Deliv. 2014;21(4):243-9. doi: 10.3109/10717544.2013.841783, PMID 24128089.

Vora B, Khopade AJ, Jain NK. Proniosome-based transdermal delivery of levonorgestrel for effective contraception. J Control Release. 1998;54(2):149-65. doi: 10.1016/s0168-3659(97)00100-4, PMID 9724902.

Ahmad MZ, Mohammed AA, Mokhtar Ibrahim M. Technology overview and drug delivery application of proniosome. Pharm Dev Technol. 2017;22(3):302-11. doi: 10.3109/10837450.2015.1135344, PMID 26794727.

Shilakari Asthana GS, Sharma PK, Asthana A. In vitro and in vivo evaluation of niosomal formulation for controlled delivery of clarithromycin. Scientifica (Cairo). 2016;2016:6492953. doi: 10.1155/2016/6492953, PMID 27293976.

G DB, P VL. Recent advances of nonionic surfactant-based nanovesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. Futur J Pharm Sci. 2020;6(1).

Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharmaceutica Sinica B. 2011;1(4):208-19. doi: 10.1016/j.apsb.2011.09.002.

A RZM, B RBB. Niosomes-challenge in preparation for pharmaceutical scientist Academic Sciences; 2014.

Iii III. Current techniques series; 1984. p. 258-60.

Peltonen L, Koistinen P, Karjalainen M, Häkkinen A, Hirvonen J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech. 2002;3(4):1–7E32. doi: 10.1208/pt030432, PMID 12916926.

Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Gotz F, Manosroi W. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm. 2010;392(1-2):304-10. doi: 10.1016/j.ijpharm.2010.03.064, PMID 20381599.

Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems-an overview. Adv Colloid Interface Sci. 2012;183-184:46-54. doi: 10.1016/j.cis.2012.08.002. PMID 22947187.

Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119-27. doi: 10.1208/s12249-010-9480-2, PMID 20635228.

Nasseri B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int J Pharm. 2005;300(1-2):95-101. doi: 10.1016/j.ijpharm.2005.05.009, PMID 16006080.

Yeo LK, Chaw CS, Elkordy AA. The effects of hydration parameters and co-surfactants on methylene blue-loaded niosomes prepared by the thin film hydration method. Pharmaceuticals (Basel). 2019;12(2). doi: 10.3390/ph12020046, PMID 30934834.

Ramkanth S, Chetty CM, Sudhakar Y, Thiruvengadarajan VS, Anitha P, Gopinath C. Development, characterization and in vivo evaluation of proniosomal based transdermal delivery system of Atenolol. Future Journal of Pharmaceutical Sciences. 2018;4(1):80-7. doi: 10.1016/j.fjps.2017.10.003.

Nasr A, Qushawy M, Swidan S. Spray dried lactose based proniosomes as stable provesicular drug delivery carriers: screening, formulation, and physicochemical characterization. Int J App Pharm. 2018;10(5):125-37. doi: 10.22159/ijap.2018v10i5.27732.

Kaoud RM, Heikal EJ, Hammady TM. Diacerein-loaded niosomes (Dc-Ns): a new technique to sustain the release of drug action. Int J App Pharm. 2022;14(1):156-63. doi: 10.22159/ijap.2022v14i1.43353.

Jadhav A, Varghese Cheriyan BV. Formulation and optimization of nifedipine-loaded nanocarriers. Int J App Pharm. 2021;13(5):311-7. doi: 10.22159/ijap.2021v13i5.42050.

Manconi M, Valenti D, Sinico C, Lai F, Loy G, Fadda AM. Niosomes as carriers for tretinoin. II. Influence of vesicular incorporation on tretinoin photostability. Int J Pharm. 2003;260(2):261-72. doi: 10.1016/s0378-5173(03)00268-0, PMID 12842345.

Sultan AA, El-Gizawy SA, Osman MA, El Maghraby GM. Niosomes for oral delivery of nateglinide: in situ–in vivo correlation. Journal of Liposome Research. Taylor and Francis. 2018;28(3):209-17. doi: 10.1080/08982104.2017.1343835, PMID 28618876.

Abdallah MH, Sabry SA, Hasan AA. Enhancing transdermal delivery of glimepiride via entrapment in proniosomal gel. J Young Pharm. 2016;8(4):335-40. doi: 10.5530/jyp.2016.4.8.

Haider MF, Kanoujia J, Tripathi CB, Arya M, Kaithwas G, Saraf SA. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design. J Pharmaceut Sci Pharmacol. 2015 Mar 1;2(1):11-20. doi: 10.1166/jpsp.2015.1042.

Namdev S, Gujar K, Mandlik S, Jamkar P. Preparation and in vivo characterization of niosomal carriers of the antidiabetic drug repaglinide. PCI- Approved-IJPSN. 2015 Feb 28;8(1):2756-67. doi: 10.37285/ijpsn.2015.8.1.8/index.php/ijpsn/article/view/764.

Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(3-4):120-6. doi: 10.3109/10717544.2013.779332, PMID 23651102.

Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK. Nanotechnology-based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract. 2018;136:52-77. doi: 10.1016/j.diabres.2017.11.018, PMID 29196152.

Sahoo RK, Biswas N, Guha A, Kuotsu K. Maltodextrin based proniosomes of nateglinide: bioavailability assessment. Int J Biol Macromol. 2014;69:430-4. doi: 10.1016/ j.ijbiomac.2014.05.075, PMID 24909314.

Samed N, Sharma V, Sundaramurthy A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation. Appl Surf Sci. 2018;449:567-73. doi: 10.1016/j.apsusc.2017.11.055.

Prasad PS, Imam SS, Aqil M, Sultana Y, Ali A. QbD-based carbopol transgel formulation: characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv. 2016;23(3):1057-66. doi: 10.3109/10717544.2014.936536, PMID 25033041.

Sankhyan A, Pawar PK. Metformin loaded non-ionic surfactant vesicles: Optimization of formulation, effect of process variables and characterization. Daru J Pharm Sci Aru. 2013;21(1):1-8. doi: 10.1186/2008-2231-21-7, PMID 23351604.

El-Ridy MS, Yehia SA, Elsayed I, Younis MM, Abdel-Rahman RF, El-Gamil MA. Metformin hydrochloride and wound healing: from nanoformulation to pharmacological evaluation. J Liposome Res. 2019;29(4):343-56. doi: 10.1080/08982104.2018.1556291. PMID 30526146.

Rathi J, Tamizharasi S, Dubey A, Rathi V. Development and characterization of niosomal drug delivery of gliclazide. J Young Pharm Acists. 2009;1(3):205. doi: 10.4103/0975-1483.57065.

Haider MF, Kanoujia J, Tripathi CB, Arya M, Kaithwas G, Saraf SA. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design. J Pharmaceut Sci Pharmacol. 2015;2(1):11-20. doi: 10.1166/jpsp.2015.1042.

Bodade SS, Shaikh KS, Kamble MS, Chaudhari PD. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv. 2013;20(1):40-6. doi: 10.3109/10717544.2012.752420, PMID 23311652.

Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res. 2021;11(3):1166-85. doi: 10.1007/s13346-020-00839-9, PMID 32804301.

Bose S, Sharma P, Mishra V, Patial S, Saraogi GK, Tambuwala MM. Comparative in vitro evaluation of glimepiride containing nanosuspension drug delivery system developed by different techniques. J Mol Struct. 2021;1231. doi: 10.1016/j.molstruc.2021.129927.

Akhtar J, Siddiqui HH, Fareed S, Badruddeen, Khalid KM, Aqil Khalid M, Aqil M. Nanoemulsion: for improved oral delivery of repaglinide. Drug Deliv. 2016;23(6):2026-34. doi: 10.3109/10717544.2015.1077290, PMID 27187792.

Ahmed OAA, Afouna MI, El-Say KM, Abdel-Naim AB, Khedr A, Banjar ZM. Optimization of self-nano emulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin Drug Deliv. 2014;11(7):1005-13. doi: 10.1517/17425247.2014.906402, PMID 24702435.

Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S. Fabrication of second generation smarter PLGA based nanocrystal carriers for improvement of drug delivery and therapeutic efficacy of gliclazide in Type-2 diabetes rat model. Sci Rep. 2019;9(1):1–15. doi: 10.1038/s41598-019-53996-4, PMID 31758056.

Mirazi N, Shoaei J, Khazaei A, Hosseini A. A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats. Eur J Drug Metab Pharmacokinet. 2015;40(3):343-8. doi: 10.1007/s13318-014-0213-x, PMID 24969688.

Ismail R, Bocsik A, Katona G, Grof I, Deli MA, Csoka I. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the glpGLP-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics. 2019;11(11):1-13. doi: 10.3390/pharmaceutics11110599, PMID 31726699.

Yu L, Li C, Le Y, Chen JF, Zou H. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique. Mater Chem Phys. 2011;130(1-2):361-6, doi: 10.1016/ j.matchemphys.2011.06.049.

Published

07-09-2022

How to Cite

H. TEAIMA, M., I. GEBRIL, M., ALLAH, F. I. A., & EL-NABARAWI, M. A. (2022). NIOSOMES VERSUS PRONIOSOMES AS PROMISING DRUG DELIVERY SYSTEMS IN TREATMENT OF DIABETES MELLITUS. International Journal of Applied Pharmaceutics, 14(5), 32–40. https://doi.org/10.22159/ijap.2022v14i5.44039

Issue

Section

Review Article(s)