DESIGN AND DEVELOPMENT OF A PHARMACOGENOMIC MODEL FOR BREAST CANCER TO STUDY THE VARIATION IN DRUG ACTION AND SIDE EFFECTS
DOI:
https://doi.org/10.22159/ijap.2022v14i3.44356Keywords:
Breast Cancer, Drug action, Homology modeling, Pharmacogenomic model, Side effect, VariationAbstract
Objective: The proneness of disease, as well as drug action and side effects, vary from person to person. This may be due to individual variations in the genome. The individual variation demands the need to design a population-specific 'predictive, preventive, participatory and personalized (p4)' pharmacogenomics drug molecule. The present work aims at designing a pharmacogenomic model for breast cancer to explain the individual variation in the proneness of the diseases and susceptibility towards drug action.
Methods: The drug action and side effects of drugs were analyzed from clinical trial reports. The genes responsible for the drug action and the genes responsible for side effects have been identified and included in the variation analysis. The pharmacogenomic gene models have been designed by inducing population-specific genetic variations within the gene sequence. The 3D structures of the 'variation-specific' protein models have been generated by 'homology modelling.' These models have been used further for docking studies with the known drug molecules. The kinetic stability of the protein-ligand complexes obtained out of docking studies has been studied by the molecular dynamic simulation.
Results: By the interaction studies and the computational analysis using the 'population-specific protein models,' the drug molecule, Capecitabine showed the highest binding affinity (–6.30kcal/mol) with the African population, Paclitaxel was found to be the most interacting with the European population with a binding affinity of–9.5603 kcal/mol, and Lapatinib is found to be the most suitable ligand for the American population with a binding affinity of–6.90 kcal/mol. These observations agree with the clinical trial data found in the 'ClinTrial database'.
Conclusion: The designed models are found to be suitable for representing the respective population-specific target models. The interaction studies of known drug molecules with these population-specific target models correspond to the observations in the 'ClinTrial database.'
Downloads
References
Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020 Jan;14:1177932219899051. doi: 10.1177/1177932219899051, PMID 32076369.
Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart DD. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019 Apr 18;9(4):76. doi: 10.3390/ metabo9040076, PMID 31003499.
Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, Aizat WM. Systematic multi-omics integration (MOI) approach in plant systems biology. Front Plant Sci. 2020;11:944. doi: 10.3389/fpls.2020.00944, PMID 32754171.
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 May;18(1):83. doi: 10.1186/s13059-017-1215-1, PMID 28476144.
Haas R, Zelezniak A, Iacovacci J, Kamrad S, Townsend S, Ralser M. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr Opin Syst Biol. 2017 Dec;6:37-45. doi: 10.1016/j.coisb.2017.08.009, PMID 32923746.
Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated omics: tools, advances, and future approaches. J Mol Endocrinol. 2018;62(1):R21-45. doi: 10.1530/JME-18-0055, PMID 30006342.
Iyer PM, Karthikeyan S, Sanjay Kumar P, Krishnan Namboori PK. Comprehensive strategy for the design of precision drugs and identification of genetic signature behind proneness of the disease-a pharmacogenomic approach. Funct Integr Genomics. 2017 Jul;17(4):375-85. doi: 10.1007/s10142-017-0559-7, PMID 28470340.
AMH, CLA, OMD, Namboori PKK. Evaluation of colorectal cancer (CRC) epidemiology a pharmacogenomic approach. J Young Pharm. 2017 Jan;9(1):36-9. doi: 10.5530/jyp.2017.9.7.
Iyer PM, PSK, SK, Namboori PKK. ”BRCA1” Responsiveness towards breast cancer-a population-wise pharmacogenomic analysis. Int J Pharm Pharm Sci. 2016 Jul;8(9):267-70. doi: 10.22159/ijpps.2016.v8i9.13457.
Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. PT. 2010 Oct;35(10):560-76. PMID 21037908.
Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017 Mar;9(3):448-51. doi: 10.21037/jtd.2017.02.75, PMID 28449441.
Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010 Apr;1(2):109-26. PMID 22247839.
Pfizer. Phase III randomized, multi-center study of sunitinib malate (SU011248) or capecitabine in subjects with advanced breast cancer who failed both a taxane and an anthracycline chemotherapy regimen or failed with a taxane and for whom further anthracycline therapy is not indicated; 2012 Jun. Available from: https://clinicaltrials.gov/ct2/show/NCT00373113. [Last accessed on 25 Jan 2022]
Tracon Pharmaceuticals Inc. An open-label phase 1B dose-finding study of TRC105 in combination with capecitabine for progressive or recurrent metastatic breast cancer; 2019 Feb. Available from: https://clinicaltrials.gov/ct2/ show/ NCT01326481. [Last accessed on 25 Jan 2022]
Wang L. Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med. 2010 Jan–Feb;2(1):3-22. doi: 10.1002/wsbm.42, PMID 20836007.
Sanjay Kumar P, Karthikeyan S, Iyer PM, Krishnan Namboori PK. Prediction of epigenetic variations in Alzheimer's disease identification of ethnic variants through pharmacogenomic approach. Res J Pharm Biol Chem Sci. 2016 Nov;7:2742-5.
Katsonis P, Koire A, Wilson SJ, Hsu TK, Lua RC, Wilkins AD, Lichtarge O. Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci. 2014 Dec;23(12):1650-66. doi: 10.1002/pro.2552, PMID 25234433.
Namboori PK, Vineeth KV, Rohith V, Hassan I, Sekhar L, Sekhar A, Nidheesh M. The ApoE gene of Alzheimer’s disease (AD). Funct Integr Genomics. 2011 Dec;11(4):519-22. doi: 10.1007/s10142-011-0238-z, PMID 21769591.
Nishi H, Nakata J, Kinoshita K. Distribution of single-nucleotide variants on protein-protein interaction sites and its relationship with minor allele frequency. Protein Sci. 2016 Feb;25(2):316-21. doi: 10.1002/pro.2845, PMID 26580303.
Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2009;4(1):1-13. doi: 10.1038/nprot.2008.197, PMID 19131951.
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.
Leyana PN, Manju PT, Vijayan M. In silico design of benoxazole bearing azetidinone derivatives as vegfr-2 agonist in cancer. Asian J Pharm Clin Res. 2021 Nov;14(11):112-5.
Manjunatha KS, Satyanarayan ND, Harishkumar S. Antimicrobial and in silico ADMET screening of novel (E)-N-(2-(1H-INDOL-3-YL-AMINO) vinyl)-3-(1-METHYL-1H-INDOL-3-YL)-3-phenylpropanamide derivatives. Int J Pharm Pharm Sci. 2016 Oct;8(10):251-6. doi: 10.22159/ijpps.2016v8i10.13957.
Vieira TF, Sousa SF. Comparing AutoDock and Vina in ligand/decoy discrimination for virtual screening. Appl Sci. 2019 Oct;9(21):4538. doi: 10.3390/app9214538.
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289, PMID 16222654.
ClinicalTrials.gov [internet]. Bethesda: National Library of Medicine. US; 2000 Feb 29. Available from: https://clinicaltrials.gov. [Last accessed on 27 Jan 2022]
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 Jan;46(D1):D1074-82. doi: 10.1093/nar/gkx1037, PMID 29126136.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan;45(D1):D353-61. doi: 10.1093/nar/gkw1092, PMID 27899662.
Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020 Jul;48(W1):W185-92. doi: 10.1093/nar/gkaa420, PMID 32496546.
Gene NCBI [internet]. (Us). Bethesda: National Library of Medicine. National Center for Biotechnology Information; 2004. Available from: https://www.ncbi.nlm.nih.gov/gene. [Last accessed on 27 Jan 2022]
UniProt Consortium. UniProt: the universal protein KnowledgeBase in 2021. Nucleic Acids Res. 2021 Jan;49(D1):D480-9. doi: 10.1093/nar/gkaa1100, PMID 33237286.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul;46(W1):W296-303. doi: 10.1093/nar/gky427, PMID 29788355.
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEAND is Co-distance constraints applied on model quality estimation. Bioinformatics. 2020 Mar 1;36(6):1765-71. doi: 10.1093/bioinformatics/btz828, PMID 31697312.
Chen YR, Peng SL, Tsay YW. Protein secondary structure prediction based on Ramachandran maps. In: Huang DS, Wunsch D, editors. C Levine D, S Jo KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science. Berlin, Heidelberg. Springer; 2008;l 5226.
Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS. The structure and dynamics of BmR1 protein from brugia malayi: in silico approaches. Int J Mol Sci. 2014 Jun;15(6):11082-99. doi: 10.3390/ijms150611082, PMID 24950179.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.
Agustini D, Vernadesly L Delviana, Theodorus. The potential of robusta coffee (Coffea Canephora) as a colorectal cancer therapy modality: an in silico study. Asian J Pharm Clin Res. 2021 Sep;14(10).
Yi F, Ji Z, Zhiguo C. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: a case of oligopeptide binding protein. Comp Math Methods Med. 2018 Dec;2018:(3502514O).
Gunn D, Garsed K, Lam C, Singh G, Lingaya M, Wahl V, Niesler B, Henry A, Hall IP, Whorwell P, Spiller R. Abnormalities of mucosal serotonin metabolism and 5-HT3 receptor subunit 3C polymorphism in irritable bowel syndrome with diarrhoea predict responsiveness to ondansetron. Aliment Pharmacol Ther. 2019 Sep;50(5):538-46. doi: 10.1111/apt.15420, PMID 31342534.
Connolly B, Isaacs C, Cheng L, Asrani KH, Subramanian RR. SERPINA1 mRNA as a treatment for Alpha-1 antitrypsin deficiency. J Nucleic Acids. 2018 Jun;2018:8247935. doi: 10.1155/2018/8247935.
Beers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res. 2017 Mar;367(3):481-93. doi: 10.1007/s00441-016-2554-z, PMID 28025703.
Carpenter AM, Singh IP, Gandhi CD, Prestigiacomo CJ. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat Rev Neurol. 2016 Jan;12(1):40-9. doi: 10.1038/nrneurol.2015.226, PMID 26670299.
Sakano T, Mahamood MI, Yamashita T, Fujitani H. Molecular dynamics analysis to evaluate docking pose prediction. Biophys Physicobiol. 2016 Jul;13:181-94. doi: 10.2142/ biophysico.13.0_181, PMID 27924273.
Mateev E, Valkova I, Georgieva M, Zlatkov A. Through ensemble docking. Int J Pharm Pharm Sci. 2021 Aug;13(8):32-5.
Published
How to Cite
Issue
Section
Copyright (c) 2022 HIMA VYSHNAVI A. M., P. K. KRISHNAN NAMBOORI
This work is licensed under a Creative Commons Attribution 4.0 International License.