A SYSTEMATIC REVIEW OF POTENTIAL PHYTOCHEMICAL COMPOUND BARK OF PARAMERIA LAEVIGATA ON BIOFILM FORMATION

Authors

  • WIRDA ANGGRAINI Faculty of Pharmacy, Airlangga University, Surabaya, 60286, Indonesia, Departement of Pharmacy, Faculty of Medicine and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, 65151, Indonesia
  • DJOKO AGUS PURWANTO Faculty of Pharmacy, Airlangga University, Surabaya, 60286, Indonesia
  • ISNAENI Faculty of Pharmacy, Airlangga University, Surabaya, 60286, Indonesia
  • IDHA KUSUMAWATI Faculty of Pharmacy, Airlangga University, Surabaya, 60286, Indonesia
  • SURYANTO Departement of Pharmacy, Faculty of Medicine and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, 65151, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022.v14s1.05

Keywords:

Biofilm formation, Natural product, Parameria laevigata, Phytochemical

Abstract

Objective: Infectious disease is one of the problems in the health sector that continues to grow from time to time. Microorganisms can differentiate and develop in complex ways to form new morphologies that grow on the surface, known as biofilms. Parameria laevigata contains a variety of secondary metabolites, so that it has potential as an anti-biofilms. The purpose of this research was to examine the effect of the compounds contained in the bark of Parameria laevigata in forming biofilms.

Methods: This systematic review research method was Systematic-Meta Analysis, which identifies research articles from journal databases including Microsoft Academic Search, Google Scholar, PubMed, and Science Direct. Meta-Analysis was used to analyze, determine, and interpret al. l the data in the systematically served articles.

Results: Using a specific search prism guideline, the search result for research article found 28 research journals as primary data for systematic review research. The results of this systematic review showed that the bark of Parameria laevigata contains alkaloids, flavonoids, tannins, and saponins. Alkaloids can interfere with the components of peptidoglycan in bacteria. Flavonoids have able to inhibit the growth of microorganisms. Tannins have a role in influencing cell wall polypeptides so that the formation of cell walls becomes less than perfect. Saponins hydrolyze bacterial cell walls.

Conclusion: The bark of Parameria laevigata has the potent activity to develop as antimicrobial by inhibiting biofilms formation mechanism.

Downloads

Download data is not yet available.

References

Lestari S, Soegianto L, Hermanu LS. Potensi antibakteri dan antibiofilm ekstrak etanol bunga bintaro (Cerbera odollam) terhadap staphylococcus aureus ATCC 6538 fakultas farmasi, [Unika widya mandala surabaya antibacterial and antibiofilm potential of the ethanolic extract of suicide tree]. J Pharm Sci Prac. 2017;4:30-5.

O’Toole GA, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49-79. doi: 10.1146/annurev.micro.54.1.49, PMID 11018124.

Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310-47. doi: 10.1128/MMBR.00041-08, PMID 19487730.

Kining E, Falah S, Nurhidayat N. The In vitro antibiofilm activity of waterleaf extract of papaya (Carica papaya L.) against Pseudomonas aeruginosa. Curr Biochem. 2016;2(3):150-63. doi: 10.29244/cb.2.3.150-163.

Risal G, Shrestha A, Kunwar S, Paudel G, Dhital R, Budha MB, Nepal R. Detection of biofilm formation by Escherichia coli with its antibiogram profile. Int J Community Med Public Health. 2018;5(9):3771. doi: 10.18203/2394-6040.ijcmph20183562.

Chakotiya AS, Tanwar A, Narula A, Sharma RK. Alternative to antibiotics against Pseudomonas aeruginosa: effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity. Microb Pathog. 2016;98:98-105. doi: 10.1016/j.micpath.2016.07.001. PMID 27392698.

Hidayati NA, Christiani C. Peran biofilm terhadap infeksi saluran ginjal yang disebabkan oleh vaginosis bakterial. Predical Derm Vener. 2019;31:2.

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5):445-59. doi: 10.4161/viru.2.5.17724, PMID 21921685.

Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J. 2000;46(6):S47-52. doi: 10.1097/00002480-200011000-00037, PMID 11110294.

Ming D, Wang D, Cao F, Xiang H, Mu D, Cao J, Li B, Zhong L, Dong X, Zhong X, Wang L, Wang T. Kaempferol inhibits the primary attachment phase of biofilm formation in staphylococcus aureus. Front Microbiol. 2017 Nov 15;8:2263. doi: 10.3389/fmicb.2017.02263, PMID 29187848.

Patel N, Oudemans PV, Hillman BI, Kobayashi DY. Use of the tetrazolium salt MTT TO measure cell viability effects of the bacterial antagonist Lysobacter enzymogenes on the filamentous fungus Cryphonectria parasitica. Antonie Leeuwenhoek. 2013;103(6):1271-80. doi: 10.1007/s10482-013-9907-3, PMID 23529159.

Kumara INC, Sri Pradnyani IGA, Sidiarta I, Kunyit UEE. (Curcuma longa) terhadap daya hambat pertumbuhan bakteri streptococcus mutans. Intisari Sains Medis. 2019;10:462-7.

Barus SH, Hamidah S, Satriadi T, Kehutanan J. Uji fitokimia senyawa aktif tumbuhan manggarsih (Parameria laevigata (Juss.) Moldenke) dari hutan alam desa malinau loksado dan hasil budidaya eksitu banjarbaru. J Sylva Scienteae. 2019;2:510-8.

Depkes R. Inventaris tanaman obat indonesia III. Jakarta: Badan Penelitian Pengembangan Kesehatan; 1994. p. 183-4.

Herlina W. Kitab tanaman obat Nusantara. Jakarta: media Pressindo; 2011. p. 806-7.

Muharrami LK, Munawaroh F, Ersam T. Inventarisasi tumbuhan jamu dan skrining fitokimia kabupaten sampang. Pena Sains. 2017;4:124-32.

Pemanfaatan SR, Kunyit EK. (Curcuma domestica) sebagai Indikator Titrasi Asam Basa. Teknoin. 2016;22:595-601.

Kolasa LC. Uji daya antimikroba ekstrak n-heksan kulit kayu repeat (Parameria laevigata (Juss.) Moldenke) terhadap pertumbuhan bakteri escherichia coli dengan kloramfenikol. Universitas Surabaya; 2008.

Saludarez M. Anti-bacterial and anti-inflammatory property evaluation of Parameria laevigata (Lupiit) for the formulation of an ointment. Int J Adv Res 2019;7(6):488-96. doi: 10.21474/IJAR01/9248.

Gurevitch J, Koricheva J, Nakagawa S, Stewart G. Meta-analysis and the science of research synthesis. Nature. 2018;555(7695):175-82. doi: 10.1038/nature25753, PMID 29517004.

Selçuk AA. A guide for systematic reviews: PRISMA. Turk Arch Otorhinolaryngol. 2019;57(1):57-8. doi: 10.5152/tao.2019.4058, PMID 31049257.

Snyder H. Literature review as a research methodology: an overview and guidelines. J Bus Res. 2019;104:333-9. doi: 10.1016/j.jbusres.2019.07.039. jbusres.2019.07.039.

Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7. doi: 10.3389/fcimb.2015.00007. PMID 25713785.

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5):445-59. doi: 10.4161/viru.2.5.17724. PMID 21921685.

Sharma V, Sharma C, Sharma S. Influence of Curcuma longa and curcumin on blood profile in mice subjected to aflatoxin b1. IJPSR. 2014;7:90-100.

Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. doi: 10.1101/cshperspect.a010306, PMID 23545571.

Rabin N, Zheng Y, Opoku Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512. doi: 10.4155/fmc.15.6, PMID 25875875.

Gunardi WD. Mekanisme biomolekuler pseudomonas aeruginosa dalam pembentukan biofilm dan sifat resistensi terhadap antibiotika. J Kedokteran Meditek. 2017;22:1-7.

Jamal M, Hussain T, Das CR, Andleeb S. Characterization of siphoviridae phage z and studying its efficacy against multidrug-resistant klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol. 2015;64(4):454-62. doi: 10.1099/jmm.0.000040.

Taghadosi R, Shakibaie MR, Masoumi S. Biochemical detection of N-acyl homoserine lactone from biofilm-forming uropathogenic escherichia coli isolated from urinary tract infection samples. Rep Biochem Mol Biol. 2015;3(2):56-61. PMID 26989738.

Satpathy S, Sen SK, Pattanaik S, Raut S. Review on bacterial biofilm: an universal cause of contamination. Biocatalysis and Agricultural Biotechnology. 2016;7:56-66. doi: 10.1016/j.bcab.2016.05.002.

Hamidah S, HF, ST, Hasil Budidaya FA, Banjarbaru E. Fakultas kehutanan universitas lambung Mangkurat; 2016.

Muharrami LK, Munawaroh F, Ersam T, Santoso M. Phytochemical screening of ethanolic extract: a preliminary test on five medicinal plants on Bangkalan. J Pena Sains. 2020;7(2):96-102. doi: 10.21107/jps.v7i2.8722.

Hayat S, Sabri AN. Screening for antibiofilm and antioxidant potential of turmeric (Curcuma longa) extracts. Pak J Pharm Sci. 2016;29(4):1163-70. PMID 27393429.

Suhartono S, Ismail YS, Muhayya SR. The interference of Moringa oleifera Leaf extracts to modulate quorum sensing-facilitated virulence factors. Biodiversitas. 2019;20(10):3000-4. doi: 10.13057/biodiv/d201031.

Dewatisari WF. Perbandingan variasi pelarut dari ekstrak daun lidah mertua (Sansevieria trifasciata) terhadap rendemen dan aktivitas antibakteri. Seminar Nasional Pendidikan Biologi Saintek 2019;4:292-300.

Nugroho SW, Rukmo M, Prasetyo EA, Yuanita T, Buah Kakao AEK. (Theobroma cacao) 6,25% dan NaOCl 2,5% terhadap bakteri streptococcus sanguinis. J Conserv Dent J 2019;9:19.

da Silva Negreiros Neto T, Gardner D, Hallwass F, Leite AJM, de Almeida CG, Silva LN, de Araujo Roque A, de Bitencourt FG, Barbosa EG, Tasca T, Macedo AJ, de Almeida MV, Giordani RB. Activity of pyrrolizidine alkaloids against biofilm formation and trichomonas vaginalis. Biomed Pharmacother. 2016;83:323-9. doi: 10.1016/j.biopha.2016.06.033. PMID 27399809.

Sun J, Wu J, An B, de Voogd NJ, Cheng W, Lin W. Bromopyrrole alkaloids with the inhibitory effects against the biofilm formation of gram-negative bacteria. Marine Drugs. 2018;16(1). doi: 10.3390/md16010009, PMID 29301295.

Agustina W, Handayani D. Skrining Fitokimia dan aktivitas antioksidan beberapa fraksi dari kulit batang jarak (Ricinus communis L.). J Pendidikan Ilmu Kimia. 2017;1:117-22.

Cosmo Andrade J, da Silva ARP, Audilene Freitas M, de Azevedo Ramos B, Sampaio Freitas T, de Assis G Dos Santos F, Leite-Andrade MC, Nunes M, Relison Tintino S, da Silva MV, Dos Santos Correia MT, de Lima-Neto RG, Neves RP, Melo Coutinho HD. Control of bacterial and fungal biofilms by natural products of Ziziphus joazeiro mart. (Rhamnaceae). Comp Immunol Microbiol Infect Dis. 2019;65:226-33. doi: 10.1016/j.cimid.2019.06.006. PMID 31300118.

Primasari A, Nasution M, Hidayati Arbi NH, Sari DP, Basyuni M. The effectiveness of soursop leaf extract against growth of aggregatibacter actinomycetemcomitans ATCC® 6514TM in vitro. Asian J Pharm Clin Res. 2018;11(12):411-5. doi: 10.22159/ajpcr.2018.v11i12.28435.

da Silva Negreiros Neto T, Gardner D, Hallwass F, Leite AJM, de Almeida CG, Silva LN, de Araujo Roque A, de Bitencourt FG, Barbosa EG, Tasca T, Macedo AJ, de Almeida MV, Giordani RB. Activity of pyrrolizidine alkaloids against biofilm formation and trichomonas vaginalis. Biomed Pharmacother. 2016;83:323-9. doi: 10.1016/j.biopha.2016.06.033, PMID 27399809.

Bhunu B, Mautsa R, Mukanganyama S. Inhibition of biofilm formation in Mycobacterium smegmatis by parinari curatellifolia leaf extracts. BMC Complement Altern Med. 2017;17(1):1–10. doi: 10.1186/s12906-017-1801-5, PMID 28558683.

Sadowska B, Budzyńska A, Wieęckowska Szakiel M, Paszkiewicz M, Stochmal A, Moniuszko Szajwaj B, Kowalczyk M, Różalska B. New pharmacological properties of medicago sativa and saponaria officinalis saponin-rich fractions addressed to candida albicans. J Med Microbiol. 2014;63(8):1076-86. doi: 10.1099/jmm.0.075291-0, PMID 24850879.

Von Borowski RG, Zimmer KR, Leonardi BF, Trentin DS, Silva RC, de Barros MP, Macedo AJ, Gnoatto SCB, Gosmann G, Zimmer AR. Red pepper capsicum baccatum: source of antiadhesive and antibiofilm compounds against nosocomial bacteria. Ind Crops Prod. 2019;127:148-57. doi: 10.1016/j.indcrop.2018.10.011.

Sari A, Widyarman, Wendhita WIP, Tjakra EE, Murdono FI, Binartha CTO. Review article prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent. 2020;10:123-8.

Andriani Y, Mohamad H, Bhubalan K, Abdullah MI, Amir H. Phytochemical analyses, anti-bacterial and anti-biofilm activities of mangrove-associated Hibiscus tiliaceus extracts and fractions against Pseudomonas aeruginosa. J Sustain Sci Manag. 2017;12:45-51.

Di Marco NI, Pungitore CR, Lucero Estrada CSM. Aporphinoid alkaloids inhibit biofilm formation of Yersinia enterocolitica isolated from sausages. J Appl Microbiol. 2020;129(4):1029-42. doi: 10.1111/jam.14664, PMID 32279402.

Radita DC, Widyarman AS, Dewa M. (God’s crown) fruit extract inhibits the formation of periodontal pathogen biofilms in vitro. J Indones Dent Assoc. 2019;2:57.

Published

15-02-2022

How to Cite

ANGGRAINI, W., PURWANTO, D. A., ISNAENI, KUSUMAWATI, I., & SURYANTO. (2022). A SYSTEMATIC REVIEW OF POTENTIAL PHYTOCHEMICAL COMPOUND BARK OF PARAMERIA LAEVIGATA ON BIOFILM FORMATION. International Journal of Applied Pharmaceutics, 14(1), 21–26. https://doi.org/10.22159/ijap.2022.v14s1.05

Issue

Section

Original Article(s)