• BURHAN MA’ARIF Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
  • FAISAL A. MUSLIKH Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
  • WIRDA ANGGRAINI Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
  • MAXIMUS M. TAEK Department of Chemistry, Faculty of Mathematics and Natural Sciences, Widya Mandira Catholic University, Kupang, Indonesia
  • HENING LASWATI Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
  • MANGESTUTI AGIL Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia



Genistein, Anti-neuroinflammatory, Microglia HMC3 cell line, Phytoestrogens


Objective: This study was aimed to evaluate the role of genistein or 4',5,7-trihydroxyisoflavone as a phytoestrogen in the treatment of estrogen deficiency-induced neuroinflammatory. The specific objectives of this study were to determine the anti-neuroinflammatory effect of genistein through measurement of MHC II and Arg1 expressions on microglia HMC3 cell line, as well as to prove that the effect occurs in an ER-dependent manner, through the measurement of free-ERβ expression.

Methods: The cells were cultured in 24-well microplates, induced with 10 ng IFN-γ, and incubated for 24 h to activate the cell to M1 phenotype which has pro-inflammatory characteristics. Genistein with a concentration of 50 μM was added to the cells. The expression of MHC II, Arg1, and free-ERβ as markers was tested through an immunocytochemistry method and measured using the CLSM instrument. In silico approach was also conducted to determine the interaction between genistein and ERβ, compared to 17β-estradiol. Genistein structure was prepared with Avogadro 1.0.1, and molecular docking was done using PyRx 0.8 software. Biovia Discovery Studio Visualizer 2016 was used to visualize the structure of genistein against 3OLS protein. The physicochemical characteristics of genistein were analyzed using the SwissADME web tool.

Results: Genistein can decrease MHC II expression and increase Arg1 expression in microglia HMC3 cells compared to negative controls (p<0.005), with expression value of 472.577±26.701 AU and 114.299±6.578 AU. But, genistein cannot decrease the free-ERβ expression in cells (p<0.005). The results of in silico analysis showed that genistein is an ERβ agonist.

Conclusion: Genistein shows anti-neuroinflammatory effects by decreasing the MHC II expression and increasing Arg1 expression in the microglia HMC3 cell line. However, this effect does not occur through the binding of genistein to ERβ, but it is likely to occur through the binding of genistein with other types of ER.


Download data is not yet available.


Prince M, Prina M. The epidemiology and impact of migraine. Migraine and other headache disorders: 2015. p. 47-60.

Au A, Feher A, McPhee L, Jessa A, Oh S, Einstein G. Estrogens, inflammation and cognition. Front Neuroendocrinol. 2016;40:87-100. doi: 10.1016/j.yfrne.2016.01.002, PMID 26774208.

Engler Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol. 2017;157;Suppl 1:188-211. doi: 10.1016/ j.pneurobio.2015.12.008, PMID 26891883.

Varshney M, Nalvarte I. Genes, gender, environment, and novel functions of estrogen receptor beta in the susceptibility to neurodevelopmental disorders. Brain Sci. 2017;7(3);Suppl 3. doi: 10.3390/brainsci7030024, PMID 28241485.

Abu-Taha M, Rius C, Hermenegildo C, Noguera I, Cerda-Nicolas JM, Issekutz AC, Jose PJ, Cortijo J, Morcillo EJ, Sanz MJ. Menopause and ovariectomy cause a low grade of systemic inflammation that may be prevented by chronic treatment with low doses of estrogen or losartan. J Immunol. 2009;183(2);Suppl 2:1393-402. doi: 10.4049/jimmunol.0803157, PMID 19553526.

Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci. 2017;10:191. doi: 10.3389/ fnmol.2017.00191, PMID 28674485.

Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11;Suppl 1:98. doi: 10.1186/1742-2094-11-98, PMID 24889886.

Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol. 2014;5:533. doi: 10.3389/fimmu.2014.00533, PMID 25386179.

Mizuno T. Neuron-microglia interactions in neuroinflammation. Clin Exp Neuroimmunol. 2015;6(3):225-31. doi: 10.1111/cen3.12228.

Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19(3);Suppl 3:197-209. doi: 10.1016/j.molmed.2012.12.007, PMID 23348042.

Yang TS, Wang SY, Yang YC, Su CH, Lee FK, Chen SC, Tseng CY, Jou HJ, Huang JP, Huang KE. Effects of standardized phytoestrogen on Taiwanese menopausal women. Taiwan J Obstet Gynecol. 2012;51(2);Suppl 2:229-35. doi: 10.1016/j.tjog.2012.04.011, PMID 22795099.

Kim M, Lim J, Lee JH, Lee KM, Kim S, Park KW, Nho CW, Cho YS. Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-E1 by RNA-seq analysis. Sci Rep. 2018;8(1):3257. doi: 10.1038/s41598-018-21601-9. PMID 29459627.

Donzelli A, Braida D, Finardi A, Capurro V, Valsecchi AE, Colleoni M, Sala M. Neuroprotective effects of genistein in Mongolian gerbils: estrogen receptor-β involvement. J Pharmacol Sci. 2010;114(2);Suppl 2:158-67. doi: 10.1254/jphs.10164fp, PMID 20962454.

Agrawal JSS, Saxena S, Sharma A. Phytoestrogen ”genistein”: its extraction and isolation from soybean seeds. Int J Pharmacogn Phytochem Res. 2015;7Suppl 6:1121-6.

Ganai AA, Farooqi H. Bioactivity of genistein: a review of in vitro and in vivo studies. Biomed Pharmacother. 2015;76:30-8. doi: 10.1016/j.biopha.2015.10.026, PMID 26653547.

Yu J, Bi X, Yu B, Chen D. Isoflavones: anti-inflammatory benefit and possible caveats. Nutrients. 2016;8(6);Suppl 6:1-16. doi: 10.3390/nu8060361, PMID 27294954.

ATCC. HMC3 (ATCC® CRL-3304™). American Type Culture Collection [internet]; 2016. Available from: [Last accessed on 10 Nov 2021]

Prosedur CCRC tetap uji sitotoksisitas metode MTT. Universitas gajah Mada; 2013.

Ma’arif B, Agil M, Laswati H. The enhancement of Arg1 and activated ERβ expression in microglia HMC3 by induction of 96% ethanol extract of Marsilea crenata Presl. leaves. J Basic Clin Physiol Pharmacol. 2020;30(6). doi: 10.1515/jbcpp-2019-0284, PMID 31981453.

Ma’arif B, Mirza DM, Hasanah M, Laswati H, Agil M. Antineuroinflammation activity of n-butanol fraction of Marsilea crenata Presl. in microglia HMC3 cell line. J Basic Clin Physiol Pharmacol. 2020;30(6). doi: 10.1515/jbcpp-2019-0255, PMID 31967965.

Möcklinghoff S, Rose R, Carraz M, Visser A, Ottmann C, Brunsveld L. Synthesis and crystal structure of a phosphorylated estrogen receptor ligand-binding domain. Chembiochem. 2010;11(16);Suppl 16:2251-4. doi: 10.1002/cbic.201000532, PMID 20922740.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2);Suppl 2:455-61. doi: 10.1002/jcc.21334, PMID 19499576.

Dallakyan S, Olson A. Participation in global governance: coordinating ”the voices of those most affected by food insecurity.” Global Food Security Governance. 2015;1263:1-11.

Pfeffer LM. The role of nuclear factor κb in the interferon response. J Interferon Cytokine Res. 2011;31(7);Suppl 7:553-9. doi: 10.1089/jir.2011.0028, PMID 21631354.

Vagaska B, New SE, Alvarez-Gonzalez C, D’Acquisto F, Gomez SG, Bulstrode NW, Madrigal A, Ferretti P. MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ-independent fashion and during development. Sci Rep. 2016;6:24251. doi: 10.1038/srep24251. PMID 27080443.

Cos P, De Bruyne T, Apers S, Vanden Berghe DV, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med. 2003;69(7);Suppl 7:589-99. doi: 10.1055/s-2003-41122, PMID 12898412.

Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res. 2003;17(8);Suppl 8:845-69. doi: 10.1002/ptr.1364, PMID 13680814.

de Villiers TJ. Bone health and osteoporosis in postmenopausal women. Best Pract Res Clin Obstet Gynaecol. 2009;23(1);Suppl 1:73-85. doi: 10.1016/j.bpobgyn.2008.10.009, PMID 19027366.

Muchtaridi M, Dermawan D, Yusuf M. Molecular docking, 3D structure-based pharmacophore modeling, and ADME prediction of alpha mangostin and its derivatives against estrogen receptor alpha. J Young Pharm. 2018;10(3);Suppl 3:252-9. doi: 10.5530/jyp.2018.10.58.

Nogara PA, Saraiva Rde A, Caeran Bueno D, Lissner LJ, Lenz Dalla Corte C, Braga MM, Rosemberg DB, Rocha JB. Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and ZINC databank. BioMed Res Int. 2015;2015:870389. doi: 10.1155/2015/870389. PMID 25685814.

Daina A, Zoete V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117-21. doi: 10.1002/cmdc.201600182, PMID 27218427.

Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s Rule of five. Int J Pharm. 2018;549(1-2):133-49. doi: 10.1016/j.ijpharm.2018.07.046, PMID 30040971.

Meyer MR, Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vasc Pharmacol. 2011 [Suppl:17-25:17-25];55(1-3):17-25. doi: 10.1016/j.vph.2011.06.003.

Lee RR, Phillips KP. Role of estrogen receptors in male reproductive physiology. RISS-IJHS. 2013;3(1);Suppl 1:40-5. doi: 10.18192/riss-ijhs.v3i1.1452.

Liu EYL, Xu ML, Jin Y, Wu Q, Dong TTX, Tsim KWK. Genistein, a phytoestrogen in soybean, induces the expression of acetylcholinesterase via G protein-coupled receptor 30 in PC12 cells. Front Mol Neurosci. 2018;11:1-11.

Zhang Z, Qin P, Deng Y, Ma Z, Guo H, Guo H, Hou Y, Wang S, Zou W, Sun Y, Ma Y, Hou W. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflammation. 2018;15(1);Suppl 1:1–13:206. doi: 10.1186/s12974-018-1246-x, PMID 30001721.



How to Cite




Original Article(s)