EFFECT OF OSTERIX AND OSTEOCALCIN ENHANCEMENT BY QUERCETIN (3,3′,4′,5,7-PENTAHYDROXYFLAVONE) ON OSTEOBLAST HFOB 1.19 CELL LINE

Authors

  • AGNIS PONDINEKA RIA ADITAMA Department of Pharmacy, Pharmacy Academy of Jember, Jember, 68125, Indonesia
  • BURHAN MA’ARIF Department of Pharmacy, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, 65151, Indonesia
  • FAISAL AKHMAL MUSLIKH Master Student of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022.v14s1.07

Keywords:

Quercetin, Anti-osteoporosis, Osteoblast, hFOB 1.19 cell line, Osterix, Osteocalcin

Abstract

Objective: This study was aimed at investigating the effect of quercetin (3,3′,4′,5,7-pentahydroxyflavone) as a phytoestrogen in the treatment of estrogen deficiency-induced osteoporosis, through the measurement of osterix and osteocalcin expressions on osteoblast hFOB 1.19 cell line.

Methods: hFOB 1.19 cells were cultured in 24-well microplates, induced with 10 ng/ml TNF-α and incubated for 24 h. TNF-α induction was used to create an estrogen deficiency condition. Quercetin was then added at 10 µM concentration. The immunocytochemistry double staining method was performed with anti-rabbit osterix primary antibody and anti-mouse osteocalcin primary antibody. The cells were then incubated at 4 °C overnight. Finally, an anti-rabbit secondary antibody FITC and anti-mouse secondary antibody rhodamine were added before the cells were analyzed using a Confocal Instrument Laser Scanning Microscopy (CLSM) at 488 and 543 nm.

Results: Quercetin increased the expressions of both osterix and osteocalcin in the osteoblast hFOB 1.19 cell line compared to the negative controls (p<0.005), with expression values of 57852*±3878.71 AU and 24161.75*±1498.65 AU, respectively.

Conclusion: Quercetin shows an anti-osteoporosis effect by increasing the expressions of both osterix and osteocalcin in osteoblast hFOB 1.19 cell line.

Downloads

Download data is not yet available.

References

Pang XG, Cong Y, Bao NR, Li YG, Zhao JN. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor-mediated pathway. BioMed Res Inter 2018;2018:1-114178021. doi: 10.1155/2018/4178021.

Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism, Springer: radionuclide and Hybrid Bone Imaging; 2012.

Van Dijk GM, Kavousi M, Troup J, Franco OHMv [review]. Health issues for menopausal women: the top 11 conditions have common solutions. Maturitas. 2015;80(1):24-30. doi: 10.1016/j.maturitas.2014.09.013, PMID 25449663.

Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016;87:130-5. doi: 10.1016/j.bone.2016.03.016, PMID 27072516.

Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 2013;28(3):559-73. doi: 10.1002/jbmr.1798, PMID 23074166.

Aditama APR, Maarif B, Laswati H, Agil M. In vitro and in silico analysis of phytochemical compounds of 96% ethanol extract of semanggi (Marsilea crenata Presl.) leaves as a bone formation agent. J Basic Clin Physiol Pharmacol. 2021;32(4):881-7. doi: 10.1515/jbcpp-2020-0515, PMID 34214308.

Maarif B, Fitri H, Saidah NL, Najib LA, Yuwafi AH, Atmaja RRD, Inayatillah FR, Dianti MR, Laswati H, Agil M. Prediction of compounds with antiosteoporosis activity in chrysophyllum cainito L. leaves through in silico approach. J Basic Clin Physiol Pharmacol. 2021;32(4):803-8. doi: 10.1515/jbcpp-2020-0393, PMID 34214348.

Forte L, Torricelli P, Boanini E, Gazzano M, Rubini K, Fini M, Bigi A. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: an in vitro osteoblast–osteoclast–endothelial cell co-culture study. Acta Biomaterialia. 2016;32:298-308. doi: 10.1016/j.actbio.2015.12.013, PMID 26689470.

Yigitaslan S, Erol K, Ozatik FKY, Ozatik O, Sahin S, Cengelli C. Estrogen-like activity of quercetin in female rats. Erciyes Med J. 2016;38(2):53-8. doi: 10.5152/etd.2016.0005.

Orsolic N, Jelec Z, Nemrava J, Balta V, Gregorovic G, Jelec D. Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis. Pol J Food Nutr Sci. 2018;68(2):149-62. doi: 10.1515/pjfns-2017-0023.

Wong SK, Chin KY, Ima Nirwana S. Quercetin as an agent for protecting the bone: a review of the current evidence. Int J Mol Sci. 2020;21(17):1-37. doi: 10.3390/ijms21176448, PMID 32899435.

Orsolic N, Goluza E, Dikic D, Lisicic D, Sasilo K, Rodak E, Jelec Z, Lazarus MV, Orct T. Role of fl avonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur J Nutr. 2014;53(5):1217-27. doi: 10.1007/s00394-013-0622-7, PMID 24271527.

Li C, Zhang P, Gu J. miR-29a modulates tumor necrosis factor- α -induced osteogenic inhibition by targeting wnt antagonists. Develop Growth Differ. 2015;57(3):264-73. doi: 10.1111/dgd.12207.

Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent advance of osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol. 2020;8: 1-15.

Tang W, Li Y, Osimiri L, Zhang C. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem. 2011;286(38):32995-3002. doi: 10.1074/jbc.M111.244236, PMID 21828043.

Lu X, Beck GR Jr, Gilbert LC, Camalier Ce, Bateman NW, Hood BL, Conrads TP, Kern MJ, You S, Chen H, Nanes MS. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. J Bone Miner Res 2011;26:209-19.

Hutomo DI, C Masulili SLC, Tadjoedin FM, Kusdhany LS. Correlation of serum osteocalcin level and periodontal attachment loss with osteoporosis risk status in postmenopausal women. Int J App Pharm. 2017;9:92-4. doi: 10.22159/ijap.2017.v9s2.22.

Nurminha N, Umniyati SR, Artama WT. Karakterisasi dan aplikasi antibodi monoklonal WDSSB5 untuk deteksi virus dengue pada sel C6/36 dengan metode imunositokimia. J Dunia Kesmas. 2012;1.

Rashid H. Application of confocal laser scanning microscopy in dentistry. J Adv Microscopy Res. 2014;9(4):245-52. doi: 10.1166/jamr.2014.1217.

Wang N, Wang L, Yang J, Wang Z, Cheng L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother Res. 2021;1-12. doi: 10.1002/ptr.7010, PMID 33421256.

Taylor CR, Rudbeck L. Immunohistochemical staining methods. Dako Denmark: IHC handbook; 2013.

Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9-13. doi: 10.1016/j.cdtm.2015.02.006, PMID 29062981.

Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation and neurogeneration. Endocr Rev. 2016;37:371-402.

Pfeilschifter J, Kooditz R, Pfohl M, Schantz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90-119. doi: 10.1210/edrv.23.1.0456, PMID 11844745.

Zha L, He L, Liang Y, Qin H, Yu B, Chang L, Xue L. TNF-αcontributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 2018;102:369-74. doi: 10.1016/j.biopha.2018.03.080, PMID 29571022.

Blaschke M, Koepp R, Cortis J, Komrakova M, Schieker M, Hempel U, Siggelkow H. IL-6, IL-1beta, and TNF-alpha only in combination influence the osteoporotic phenotype in Crohn’s patients via bone formation and bone resorption. Adv Clin Exp Med. 2018;27(1):645-56. doi: 10.17219/acem/67561, PMID 29521042.

Boyce BF, Li J, Xing L, Yao Z. Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Front Immunol. 2018;9:2263. doi: 10.3389/fimmu.2018.02263, PMID 30323820.

Zhu S, He H, Gao C, Luo G, Xie Y, Wang H, Tian L, Chen X, Yu X, He C. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. J Mol Endocrinol. 2018;60(3):185-98. doi: 10.1530/JME-17-0218, PMID 29339399.

Chen YP, Chu YL, Tsuang YH, Wu Y, Kuo CY, Kuo YJ. Anti-inflammatory effects of adenine enhance osteogenesis in the osteoblast-like MG-63 cells. Life (Basel). 2020;10(7):1-10. doi: 10.3390/life10070116, PMID 32707735.

Aeschlimann D, Evans BAJ. The vital osteoclast: how is it regulated? Cell Death Differ. 2004;11(S1):S5-7. doi: 10.1038/sj.cdd.4401470.

Yen ML, Chien CC, Chiu IM, Huang HI, Chen YC, Hu HI, Yen BL. Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: a possible in vitro model of human mesenchymal progenitors. Stem Cells. 2007;25(1):125-31. doi: 10.1634/stemcells.2006-0295, PMID 17204605.

Subramaniam M, Jalal SM, Rickard DJ, Harris SA, Bolander ME, Spelsberg TC. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem. 2002;87(1):9-15. doi: 10.1002/jcb.10259, PMID 12210717.

Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19(3):197-209. doi: 10.1016/j.molmed.2012.12.007, PMID 23348042.

Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience. 2013;238:345-60. doi: 10.1016/j.neuroscience.2013.02.005, PMID 23419549.

Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol. 2014;741:230-6. doi: 10.1016/j.ejphar.2014.07.057, PMID 25160742.

Barbuto R, Mitchell J. Regulation of the osterix (Osx, Sp7) promoter by osterix and its inhibition by parathyroid hormone. J Mol Endocrinol. 2013;51(1):99-108. doi: 10.1530/JME-12-0251, PMID 23682129.

Aonuma H, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med. 2009;218(3):201-5. doi: 10.1620/tjem.218.201, PMID 19561390.

Laswati H. Mekanisme selular and molekular remodeling tulang sebagai implikasi pathogenesis osteoporosis. Zifatama Publisher; 2015.

Wong RWK, Rabie ABM. Effect of quercetin on preosteoblasts and bone defects,. The Open Orthopaedics J. 2008;2:27-32. doi: 10.2174/1874325000802010027, PMID 19461927.

Huang YYY, Wang ZHH, Deng LHH, Wang H, Zheng Q. Oral administration of quercetin or its derivatives inhibit bone loss in animal model of osteoporosis. Oxidative Medicine and Cellular Longevity. 2020;2020:1–216080597. doi: 10.1155/2020/6080597, PMID 33194005.

Published

15-02-2022

How to Cite

ADITAMA, A. P. R., MA’ARIF, B., & MUSLIKH, F. A. (2022). EFFECT OF OSTERIX AND OSTEOCALCIN ENHANCEMENT BY QUERCETIN (3,3′,4′,5,7-PENTAHYDROXYFLAVONE) ON OSTEOBLAST HFOB 1.19 CELL LINE. International Journal of Applied Pharmaceutics, 14(1), 32–35. https://doi.org/10.22159/ijap.2022.v14s1.07

Issue

Section

Original Article(s)