PROTEOMIC STUDY OF CARBAPENEM-RESISTANT K. PNEUMONIAE CLINICAL ISOLATES

Authors

  • VETRISELVI SUBRAMANIYAN Department of Microbiology, School of Life Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117 Tamil Nadu, India
  • SURESH DHANARAJ Department of Microbiology, School of Life Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117 Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2022.v14ti.7

Keywords:

K. pneumoniae, Carbapenem resistance, Uropathogens, Proteomics

Abstract

Objective: Now it's a worldwide issue that carbapenem resistance is spreading. This has made K. pneumoniae infections more difficult to treat. All Klebsiella pneumonia's proteins were examined in this study, which focused on the carbapenem-resistant bacteria's response to meropenem.

Methods: Proteomics (MALDI-TOF) and bioinformatics methods were combined to answer the new enigma of resistance. Functional annotation, pathway enrichment and protein–protein interaction were some of the uses of this data. Both KEGG and STRING played an important role (PPI).

Results: Proteins that help synthesise DNA and RNA, proteins that aid in carbapenem degradation, and proteins that aid energy and intermediate metabolism are all subdivided into two classes.007A

Conclusion: Bacterial survival and meropenem resistance may have been aided by four overexpressed proteins and their partners. A new anti-resistance medication based on these proteins could help restrict the growth of "bad bugs."

Downloads

Download data is not yet available.

References

Endimiani A, Hujer AM, Perez F, Bethel CR, Hujer KM, Kroeger J. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J Antimicrob Chemother. 2009 Mar;63(3):427-37. doi: 10.1093/jac/dkn547. PMID 19155227, PMCID PMC2640158.

Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med. 2005 Jun 27;165(12):1430-5. doi: 10.1001/ archinte.165.12.1430, PMID 15983294.

Martinez Martinez L, Pascual A, Hernandez Alles S, Alvarez Diaz D, Suarez AI, Tran J. Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother. 1999 Jul;43(7):1669-73. doi: 10.1128/AAC.43.7.1669, PMID 10390220, PMC89341.

Jacoby GA, Mills DM, Chow N. Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004 Aug;48(8):3203-6. doi: 10.1128/AAC.48.8.3203-3206.2004, PMID 15273152, PMC478483.

Freiberg C, Brotz Oesterhelt H, Labischinski H. The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol. 2004 Oct;7(5):451-9. doi: 10.1016/j.mib.2004.08.010. PMID 15451499.

Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J. Global proteome analysis of vancomycin stress in staphylococcus aureus. Int J Med Microbiol. 2013 Dec;303(8):624-34. doi: 10.1016/j.ijmm.2013.08.014. PMID 24161710.

Dos Santos KV, Diniz CG, Veloso Lde C, de Andrade HM, Giusta Mda S, Pires Sda F, Santos AV, Apolonio AC, de Carvalho MA, Farias Lde M. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010 May;161(4):268-75. doi: 10.1016/j.resmic.2010.03.006. Epub 2010 Apr 8. PMID: 20381611.

Rangarajan N, Sangeetha R, Mohanasundaram S, Sampath, Porkodi K, Dass Prakash MV. Additive inhibitory effect of the peels of citrus limon and citrus sinensis against amylase and glucosidase activity. IJRPS 2020;11(4):6876-80. doi: 10.26452/ijrps.v11i4.3661.

Lata M, Sharma D, Deo N, Tiwari PK, Bisht D, Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J Proteomics. 2015 Sep 8;127(A):114-21. doi: 10.1016/j.jprot.2015.07.031. PMID 26238929.

Wayne PA. Performance standards for antimicrobial susceptibility testing: 24 informational supplement. CLSI. 2014;M100:S24.

Qayyum S, Sharma D, Bisht D, Khan AU. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach. Biochem Biophys Res Commun. 2016 Jun 10;474(4):652-9. doi: 10.1016/j.bbrc.2016.04.145. PMID 27144316.

Mohanasundaram S, Doss VA, Maddisetty P, Magesh R, Sivakumar K, Subathra M. Pharmacological analysis of hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against Hep G2 cancer cell line. Pak J Pharm Sci. 2019;32(3):931-4.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. doi: 10.1006/abio.1976.9999, PMID 942051.

Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan KM. Tuberculosis ferritin (Rv3841): potential involvement in amikacin (AK) and kanamycin (KM) resistance. Biochem Biophys Res Commun. 2016 Sep 16;478(2):908-12. doi: 10.1016/j.bbrc.2016.08.049. PMID 27521892.

Sharma D, Khan AU. Role of cell division protein divIVA in Enterococcus faecalis pathogenesis, biofilm and drug resistance: A future perspective by in silico approaches. Microb Pathog. 2018 Dec;125:361-5. doi: 10.1016/j.micpath.2018.10.001. PMID 30290265.

Domenech Sanchez A, Benedi VJ, Martinez Martinez L, Alberti S. Evaluation of differential gene expression in susceptible and resistant clinical isolates of Klebsiella pneumoniae by DNA microarray analysis. Clin Microbiol Infect. 2006 Sep;12(9):936-40. doi: 10.1111/j.1469-0691..01470.x. PMID 16882305.

Susin MF, Baldini RL, Gueiros Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol. 2006 Dec;188(23):8044-53. doi: 10.1128/JB.00824-06. PMID 16980445, PMCID PMC1698207.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Pennarasi M. GC-MS and HPLC analysis of Antiglycogenolytic and Glycogenic compounds in kaempferol 3-O–gentiobioside containing Senna alata L. leaves in experimental rats. Translational Metab Syndr Research. 2021;4:10-7.

Bernal Cabas M, Ayala JA, Raivio TL. The Cpx envelope stress response modifies peptidoglycan cross-linking via the L, D-transpeptidase LdtD and the novel protein YgaU. J Bacteriol. 2015 Feb;197(3):603-14. doi: 10.1128/JB.02449-14. PMID 25422305, PMCID PMC4285979.

Delhaye A, Collet JF, Laloux G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio. 2016 Feb 23;7(1):e00047-16. doi: 10.1128/mBio.00047-16, PMID 26908573, PMCID PMC4791840.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504. doi: 10.1101/gr.1239303, PMID 14597658, PMCID PMC403769.

Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Velayutham Dass Prakash MV. In silico prediction of interactions and molecular dynamics simulation analysis of Mpro of a severe acute respiratory syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci. 2022;12(05):104-19. doi: 10.7324/JAPS.2022.120508.

Published

28-07-2022

How to Cite

SUBRAMANIYAN, V., & DHANARAJ, S. (2022). PROTEOMIC STUDY OF CARBAPENEM-RESISTANT K. PNEUMONIAE CLINICAL ISOLATES. International Journal of Applied Pharmaceutics, 14, 89–94. https://doi.org/10.22159/ijap.2022.v14ti.7

Issue

Section

Original Article(s)