NANO CARRIER DRUG DELIVERY SYSTEMS FOR THE TREATMENT OF COGNITIVE DYSFUNCTION IN DEPRESSION-AN OVERVIEW ON THE NANO FORMULATIONS TARGETING TO THE BRAIN

Authors

  • JERIN JAMES Department of Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamilnadu, India
  • JAMUNA RANI Department of Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamilnadu, India
  • SATHYANARAYANAN VARADARAJAN Department of Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijap.2022.v14ti.28

Keywords:

Major depressive disorder, Cognitive dysfunction, Nano drugs, Nano formulations, Nano carriers

Abstract

To review and discuss the current therapeutic strategies available for the management of cognitive dysfunction in major depressive disorder with special emphasis on novel therapeutics based on nanotechnology like nano carrier delivery systems. The method entailed a review of research articles, review articles, and other internet-sourced materials. Journals, articles, and reports were thoroughly searched for the efficacy and safety of nanotechnology based newer drug delivery approaches for the management of cognitive dysfunction in major depressive disorder. The information obtained during the literature search aided in comprehending the scenario. Several new nanomedicines and nanotechnology based drug delivery systems for improving the efficacy of new and old drugs used for the management of cognitive dysfunction in major depressive disorder were reviewed. There is a dearth of sufficient studies which focus on cognitive domain in depression. Nanomedicines and nanotechnology based drug delivery systems holds tremendous potential in the management of cognitive impairment in depression as well as other neuropsychiatric disorders. It is imperative to conduct advanced studies in this regard for better therapeutic outcomes in the management of such patients.

Downloads

Download data is not yet available.

References

Lam RW, Kennedy SH, Mclntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014 Dec;59(12):649-54. doi: 10.1177/070674371405901206, PMID 25702365, PMCID PMC4304584.

McIntyre RS, Xiao HX, Syeda K, Vinberg M, Carvalho AF, Mansur RB. The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS Drugs. 2015 Jul;29(7):577-89. doi: 10.1007/s40263-015-0263-x, PMID 26290264.

Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012 Jan;62(1):63-77. doi: 10.1016/j.neuropharm.2011.07.036. PMID 21827775, PMCID PMC3205453.

Gonda X, Pompili M, Serafini G, Carvalho AF, Rihmer Z, Dome P. The role of cognitive dysfunction in the symptoms and remission from depression. Ann Gen Psychiatry. 2015 Sep 22;14:27. doi: 10.1186/s12991-015-0068-9, PMID 26396586, PMCID PMC4578787.

Carvalho AF, Miskowiak KK, Hyphantis TN, Kohler CA, Alves GS, Bortolato BPM, Machado Vieira R, Berk M, McIntyre RS. Cognitive dysfunction in depression-pathophysiology and novel targets. CNS Neurol Disord Drug Targets. 2014;13(10):1819-35. doi: 10.2174/1871527313666141130203627. PMID: 25470397.

Moraros J, Nwankwo C, Patten SB, Mousseau DD. The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: A systematic review and meta-analysis. Depress Anxiety. 2017 Mar 1;34(3):217-26. doi: 10.1002/da.22584, PMID 28029715.

Vieta E, Sluth LB, Olsen CK. Corrigendum to ``The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: A short-term, randomized, double-blind, exploratory study versus escitalopram’’. J Affect Disord J Affect Disord. 2018;236:319. doi: 10.1016/j.jad.2018.03.011. PMID 29807616.

Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RSE. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology. 2015;40(8):2025-37. doi: 10.1038/npp.2015.52, PMID 25687662.

Vieta E, Sluth LB, Olsen CK. The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: A short-term, randomized, double-blind, exploratory study versus escitalopram. J Affect Disord. 2018 Feb 1;227:803-9. doi: 10.1016/j.jad.2017.11.053, PMID 29673132.

Katona C, Hansen T, Olsen CK. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol. 2012 Jul;27(4):215-23. doi: 10.1097/ YIC.0b013e3283542457, PMID 22572889.

Areberg J, Søgaard B, Højer AM. The clinical pharmacokinetics of Lu AA21004 and its major metabolite in healthy young volunteers. Basic Clin Pharmacol Toxicol. 2012 Sep 1;111(3):198-205. doi: 10.1111/j.1742-7843.2012.00886.x, PMID 22448783.

Hvenegaard MG, Bang-Andersen B, Pedersen H, Jørgensen M, Puschl A, Dalgaard L. Identification of the cytochrome P450 and other enzymes involved in the in vitro oxidative metabolism of a novel antidepressant, Lu AA21004. Drug Metab Dispos. 2012 Jul;40(7):1357-65. doi: 10.1124/dmd.112.044610, PMID 22496396.

Rakotoarisoa M, Angelov B, Garamus VM, Angelova A. Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega. 2019 Feb 12;4(2):3061-73. doi: 10.1021/acsomega.8b03101.

Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008 Jul;130(1):55-70. doi: 10.1007/s00418-008-0424-9, PMID 18415116.

Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun;16(1):1-13. doi: 10.1016/j.nbd.2003.12.016, PMID 15207256.

Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004 Oct;104(1):29-45. doi: 10.1016/j.pharmthera.2004.08.001, PMID 15500907.

Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39-78. doi: 10.1007/978-3-0348-8049-7_2, PMID 14674608.

Bartels AL, Willemsen ATM, Kortekaas R, De Jong BM, De Vries R, De Klerk O. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna). 2008 Jul;115(7):1001-9. doi: 10.1007/s00702-008-0030-y, PMID 18265929.

Rizk ML, Zou L, Savic RM, Dooley KE. Importance of drug pharmacokinetics at the site of action. Clin Transl Sci. 2017 May 1;10(3):133-42. doi: 10.1111/cts.12448, PMID 28160433.

Kiviniemi V, Korhonen V, Kortelainen J, Rytky S, Keinanen T, Tuovinen T. Real-time monitoring of human blood-brain barrier disruption. PLOS ONE. 2017 Mar 1;12(3):e0174072. doi: 10.1371/journal.pone.0174072, PMID 28319185.

Zheng W. Neurotoxicology of the brain barrier system: new implications. J Toxicol Clin Toxicol. 2001;39(7):711-9. doi: 10.1081/clt-100108512, PMID 11778669.

Zheng W, Aschner M, Ghersi Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003 Oct 1;192(1):1-11. doi: 10.1016/s0041-008x(03)00251-5, PMID 14554098.

Mohanasundaram S, Doss VA, Maddisetty P, Magesh R, Sivakumar K, Subathra M. Pharmacological analysis of hydroethanolic extract of Senna alata (L.) for in vitro free radical scavenging and cytotoxic activities against Hep G2 cancer cell line. Pak J Pharm Sci. 2019;32(3):931-4.

Rochfort KD, Collins LE, McLoughlin A, Cummins PM. Tumour necrosis factor-α-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6. J Neurochem. 2016 Feb 1;136(3):564-72. doi: 10.1111/jnc.13408, PMID 26499872.

Bonney S, Seitz S, Ryan CA, Jones KL, Clarke P, Tyler KL. Gamma interferon alters junctional integrity via rho kinase, resulting in blood-brain barrier leakage in experimental viral encephalitis. mBio. 2019;10(4). doi: 10.1128/mBio.01675-19, PMID 31387911.

Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci USA. 2017 Jan 3;114(1):E75-84. doi: 10.1073/pnas.1614777114, PMID 27994152.

Calias P, Banks WA, Begley D, Scarpa M, Dickson P. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment. Pharmacol Ther. 2014;144(2):114-22. doi: 10.1016/j.pharmthera.2014.05.009, PMID 24854599.

Cohen Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol. 2017 Feb 1;67:23-35. doi: 10.1016/j.pediatrneurol.2016.10.022, PMID 28089765.

DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. J Vis Exp. 2013;75(75):e50326. doi: 10.3791/50326, PMID 23712122.

Hanson LR, Frey WH, II. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008 Dec 9;Suppl 3:S5. doi: 10.1186/1471-2202-9-S3-S5, PMID 19091002.

Brenza TM, Schlichtmann BW, Bhargavan B, Vela Ramirez JE, Nelson RD, Panthani MG. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A. 2018 Nov 1;106(11):2881-90. doi: 10.1002/jbm.a.36477, PMID 30369055.

Li J, Sabliov C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev. 2013 Jun 1;2(3):241-57. doi: 10.1515/ntrev-2012-0084.

Yen SY, Chen SR, Hsieh J, Li YS, Chuang SE, Chuang HM. Biodegradable interstitial release polymer loading a novel small molecule targeting AXL receptor tyrosine kinase and reducing brain tumour migration and invasion. Oncogene. 2016;35(17):2156-65. doi: 10.1038/onc.2015.277, PMID 26257061.

Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des. 2016;22(9):1177-93. doi: 10.2174/1381612822666151221150733, PMID 26685681.

Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv. 2016;13(7):963-75. doi: 10.1517/17425247.2016.1171315. PMID 27020469.

Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv. 2020;17(1):23-32. doi: 10.1080/17425247.2020.1698544. PMID 31774000.

Mohanasundaram S, Doss VA, Haripriya G, Varsha M, Daniya S, Madhankumar. GC-MS analysis of bioactive compounds and comparative antibacterial potentials of aqueous, ethanolic and hydroethanolic extracts of Senna alata L. against enteric pathogens. Int J Res Pharm Sci. 2017;8(1):22-7.

Chaudhari SP, Shinde PU. Formulation and characterization of tranylcypromine loaded polymeric micellar in situ nasal gel for treatment of depression. J Sci Technol. 2020;5;5:149-65.

Singh D, Rashid M, Hallan SS, Mehra NK, Prakash A, Mishra N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol. 2016 Apr 2;44(3):865-77. doi: 10.3109/21691401.2014.998824, PMID 26042481.

Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol. 2020 Dec 21;8:626882. doi: 10.3389/fbioe.2020.626882, PMID 33409272.

Erdo F, Bors LA, Farkas D, Bajza A, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018 Oct 1;143:155-70. doi: 10.1016/j.brainresbull.2018.10.009, PMID 30449731.

Panek M, Kawalec P, Pilc A, Lason W. Developments in the discovery and design of intranasal antidepressants. Expert Opin Drug Discov. 2020 Oct 2;15(10):1145-64. doi: 10.1080/17460441.2020.1776697. PMID 32567398.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Dass Prakash MV, Monicka N. GC-MS identification of anti-inflammatory and anticancer metabolites in edible milky white mushroom (Calocybe indica) against human breast cancer (MCF-7) cells. Res J Pharm Technol. 2021;14(8):4300-6.

Silva S, Bicker J, Fonseca C, Ferreira NR, Vitorino C, Alves G. Encapsulated escitalopram and paroxetine intranasal co-administration: in vitro/in vivo evaluation. Front Pharmacol. 2021 Dec 2;12:3358751321. doi: 10.3389/fphar.2021.751321, PMID 34925013.

Jani P, Vanza J, Pandya N, Tandel H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv. 2019;10(11):683-96. doi: 10.4155/tde-2019-0060, PMID 31744396.

Vitorino C, Silva S, Gouveia F, Bicker J, Falcao A, Fortuna A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur J Pharm Biopharm. 2020;153(April):106-20. doi: 10.1016/j.ejpb.2020.04.011, PMID 32525033.

Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in nano-enabled platforms for the treatment of depression. Polymers (Basel). 2021;13(9). doi: 10.3390/polym13091431, PMID 33946703.

De Enfoque V de calidad por diseno. (QbD) para formular el sistema de gelificacion in situ para el suministro desde la nariz al cerebro del hidrocloruro de fluoxetina: estudio in vitro e in vivo [internet]; 2022.

Pandey YR, Kumar S, Gupta BK, Ali J, Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation. Nanotechnology. 2016 Jan 1;27(2):025102. doi: 10.1088/0957-4484/27/2/025102, PMID 26629830.

Elshafeey AH, El-Dahmy RM. Formulation and development of oral fast-dissolving films loaded with nanosuspension to augment paroxetine bioavailability: in vitro characterization, ex vivo permeation, and pharmacokinetic evaluation in healthy human volunteers. Pharmaceutics. 2021 Nov 5;13(11). doi: 10.3390/pharmaceutics13111869, PMID 34834284.

Golden RN. Efficacy and tolerability of controlled-release paroxetine. Psychopharmacol Bull. 2003;37Suppl 1:176-86. PMID 14566210.

Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech. 2013;14(1):101-10. doi: 10.1208/s12249-012-9893-1, PMID 23229381.

Aranaz I, Panos I, Peniche C, Heras A, Acosta N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules. 2017 Nov 1;22(11). doi: 10.3390/molecules22111980, PMID 29140306.

Mohanasundaram S, Rangarajan N, Sampath V, Porkodi K, Pennarasi M. GC-MS and HPLC analysis of antiglycogenolytic and glycogenic compounds in Kkaempferol 3-O–gentiobioside containing senna alata L. leaves in experimental rats. Translational Metabolic Syndrome 2021;4:10-7.

Casolaro M, Casolaro I. Controlled release of antidepressant drugs by multiple stimuli-sensitive hydrogels based on α-aminoacid residues. J Drug Deliv Sci Technol. 2015 Dec 1;30:82-9. doi: 10.1016/j.jddst.2015.09.020.

Elhesaisy N, Swidan S. Trazodone loaded lipid core poly (ε-caprolactone) nanocapsules: development, characterization and in vivo antidepressant effect evaluation. Sci Reports. 2020;10(1):1–10. doi: 10.1038/s41598-020-58803-z, PMID 32029776.

Jani P, Vanza J, Pandya N, Tandel H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv. 2019;10(11):683-96. doi: 10.4155/tde-2019-0060, PMID 31744396.

Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther. 2017 Jun 19;11:1815-25. doi: 10.2147/DDDT.S102500, PMID 28684900.

Shinde M, Bali N, Rathod S, Karemore M, Salve P. Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles. Drug Dev Ind Pharm. 2020 May 3;46(5):826-45. doi: 10.1080/03639045.2020.1757697, PMID 32312082.

McIntyre RS, Lophaven S, Olsen CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol. 2014 Oct 1;17(10):1557-67. doi: 10.1017/ S1461145714000546, PMID 24787143.

Rangarajan N, Sangeetha R, Mohanasundaram S, Sampath, Porkodi K, Dass Prakash MV. Additive inhibitory effect of the peels of Citrus limon and Citrus sinensis against amylase and glucosidase activity. IJRPS 2020;11(4):6876-80. doi: 10.26452/ijrps.v11i4.3661.

Bartels C, Wagner M, Wolfsgruber S, Ehrenreich H, Schneider A, Alzheimer’s Disease Neuroimaging Initiative. Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression. Am J Psychiatry. 2018 Mar 1;175(3):232-41. doi: 10.1176/appi.ajp.2017.17040404, PMID 29179578.

Mathews A, MacLeod C. Cognitive vulnerability to emotional disorders. Annu Rev Clin Psychol. 2005;1:167-95. doi: 10.1146/annurev.clinpsy.1.102803.143916. PMID 17716086.

Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi Saab D. Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacol. 1999;145(2):193-204. doi: 10.1007/s002130051049, PMID 10463321.

Sivakumar S, Mohanasundaram S, Rangarajan N, Sampath V, Velayutham Dass Prakash MV. In silico prediction of interactions and molecular dynamics simulation analysis of Mpro of severe acute respiratory syndrome caused by novel coronavirus 2 with the FDA-approved nonprotein antiviral drugs. J Appl Pharm Sci. 2022;12(5):104-19. doi: 10.7324/JAPS.2022.120508.

Wang Q, Sivakumar K, Mohanasundaram S. Impacts of extrusion processing on food nutritional components. Int J Syst Assur Eng Manag 2022;13:364–74. doi: 10.1007/s13198-021-01422-2.

Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med. 2013 Mar 1;3(3):a011619. doi: 10.1101/cshperspect.a011619, PMID 23457296.

De AK, Bera T. Analytical method development, validation and stability studies by RP-HPLC method for simultaneous estimation of andrographolide and curcumin in co-encapsulated nanostructured lipid carrier drug delivery system. Int J App Pharm. 2021 Sep 7;13(5):73-86. doi: 10.22159/ijap.2021v13i5.42181.

Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi J de, A Brandolfi JA. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:476-83. doi: 10.1016/j.msec.2017.03.283, PMID 28532055.

Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol Med. 2015 Dec;7(12):1547-64. doi: 10.15252/emmm.201505413, PMID 26589247.

Abd Allah H, Nasr M, Ahmed Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and pharmacological characterization of ascorbic acid and nicotinamide chitosan nanoparticles against insulin-resistance-induced cognitive defects: A comparative study. ACS Omega. 2021 Feb 9;6(5):3587-601. doi: 10.1021/acsomega.0c05096, PMID 33585742.

Javed Ahmed Ujjan JA, William Morani W, Naz Memon N, Sugumar Mohanasundaram S, Shibili Nuhmani S, Bhupesh Kumar Singh BK. "Force platform-based intervention program for individuals suffering with neurodegenerative diseases like Parkinson". Comput Math Methods Med. 2022. doi: 10.1155/2022/1636263, PMID 35082910.

Mcintyre RS, Soczynska JK, Woldeyohannes HO, Miranda A, Vaccarino A, Macqueen G. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 2012 Nov 1;14(7):697-706. doi: 10.1111/bdi.12006, PMID 23107220.

Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology. 2008 Feb 5;70(6):440-8. doi: 10.1212/01.WNL.0000265401.62434.36, PMID 17942819.

Moore K, Hughes CF, Hoey L, Ward M, Cunningham C, Molloy AM. B-vitamins in relation to depression in older adults over 60 years of Age: the trinity ulster department of agriculture (TUDA) cohort study. J Am Med Dir Assoc. 2019 May 1;20(5):551-7. doi: 10.1016/j.jamda.2018.11.031.

Roy NM, Al-Harthi L, Sampat N, Al-Mujaini R, Mahadevan S, Al Adawi S. Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Front Biosci (Landmark Ed). 2021 Jan 1;26(3):566-611. doi: 10.2741/4908, PMID 33049684.

Lee HK, Kim SY, Sok SR. Effects of multivitamin supplements on cognitive function, serum homocysteine level, and depression of Korean older adults with mild cognitive impairment in care facilities. J Nurs Scholarsh An Off Publ Sigma Theta Tau Int Honor Soc Nurs. 2016 May 1;48(3):223-31. doi: 10.1111/jnu.12201, PMID 26878196.

Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6 mo randomised controlled trial. Br J Nutr. 2012 Jun 14;107(11):1682-93. doi: 10.1017/S0007114511004788.

Published

28-07-2022

How to Cite

JAMES, J., RANI, J., & VARADARAJAN, S. (2022). NANO CARRIER DRUG DELIVERY SYSTEMS FOR THE TREATMENT OF COGNITIVE DYSFUNCTION IN DEPRESSION-AN OVERVIEW ON THE NANO FORMULATIONS TARGETING TO THE BRAIN. International Journal of Applied Pharmaceutics, 14, 28–33. https://doi.org/10.22159/ijap.2022.v14ti.28

Issue

Section

Review Article(s)