BIOAVAILABILITY PROBLEMS OF PHYTOSTEROLS: A SYSTEMATIC REVIEW

Authors

  • JAMAL BASHA DUDEKULA Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474020 https://orcid.org/0000-0003-2757-789X
  • KUMAR P. R. Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203
  • RANGANAYAKULU D. Department of Pharmacology, Sri Padmavathi School of Pharmacy, Tiruchanoor, Tirupati, Andhra Pradesh 517503

DOI:

https://doi.org/10.22159/ijap.2022v14i6.45734

Keywords:

Phytosterols, Absorption, Bioavailability, Steroidal compounds

Abstract

Phytosterols (PS) are biologically active steroidal compounds obtained from plant foods and cholesterol is found in animals. They have a prominent role in reducing the low-density lipoprotein (LDL) cholesterol levels, thus decreasing the risk of many diseases. PSs also have anti-cancer, antioxidant, antiulcer, immunomodulatory, antibacterial, antifungal effects and modulate inflammation by promoting the wound healing and inhibition of platelet aggregation. The most challenging part concerned about phytosterols was bioavailability. Phytosterol’s absorption and the concentration of circulation over the body were lesser in human intestine compared to cholesterol because of its selectivity and return through intestinal transporters. We searched PubMed, Scopus, Embase, Google scholar and major conference proceedings. Sixteen such therapeutically potent plant steroids were studied in this systematic review to assess the bioavailability issues of phytosterols. Swiss ADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness was used for the study.

Downloads

Download data is not yet available.

References

Pendharkar GB, Anjum SD, Patil S. Enhanced biotransformation of phytosterols, a by-product of soybean refineries, to a key intermediate used for synthesis of steroidal drugs. Asian J Pharm Clin Res. 2014;7(5):178-80.

Meng H, Matthan NR, Angellotti E, Pittas AG, Lichtenstein AH. Exploring the effect of vitamin D3 supplementation on surrogate biomarkers of cholesterol absorption and endogenous synthesis in patients with type 2 diabetes-randomized controlled trial. Am J Clin Nutr. 2020;112(3):538-47. doi: 10.1093/ajcn/nqaa149, PMID 32559272.

Sudhop T, Sahin Y, Lindenthal B, Hahn C, Lüers C, Berthold HK. Comparison of the hepatic clearances of campesterol, sitosterol, and cholesterol in healthy subjects suggests that efflux transporters controlling intestinal sterol absorption also regulate biliary secretion. Gut. 2002;51(6):860-3. doi: 10.1136/gut.51.6.860, PMID 12427790.

A Zeez R, S Abaas I, J Kadhim E. Isolation and characterization of β-sitosterol from elaeagnus angustifolia cultivated in Iraq. Asian J Pharm Clin Res 2018;11(11). doi: 10.22159/ajpcr.2018.v11i11.29030.

Le Goff M, Le Ferrec E, Mayer C, Mimouni V, Lagadic Gossmann D, Schoefs B. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie. 2019;167:106-18. doi: 10.1016/j.biochi.2019.09.012, PMID 31545993.

Lin X, Racette SB, Ma L, Wallendorf M, Spearie CA, Ostlund RE. Plasma biomarker of dietary phytosterol intake. PLOS ONE. 2015;10(2):e0116912. doi: 10.1371/journal.pone.0116912, PMID 25668184.

National Center for Biotechnology Information. PubChem Compound Summary for CID 444679, Ergosterol; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ergosterol. [Last accessed on 05 Dec 2021]

National Center for Biotechnology Information. PubChem Compound Summary for CID 5280794, Stigmasterol; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Stigmasterol. [Last accessed on 05 Dec 2021]

Elkin RG, Lorenz ES. Feeding laying hens a bioavailable soy sterol mixture fails to enrich their eggs with phytosterols or elicit egg yolk compositional changes. Poult Sci. 2009;88(1):152-8. doi: 10.3382/ps.2008-00271, PMID 19096069.

Hsu CC, Kuo HC, Huang KE. The effects of phytosterols extracted from Diascorea alata on the antioxidant activity, plasma lipids, and hematological profiles in Taiwanese menopausal women. Nutrients. 2017;9(12):1-7. doi: 10.3390/nu9121320, PMID 29206136.

Ho XL, Loke WM. Dietary plant sterols supplementation increases in vivo nitrite and nitrate production in healthy adults: A randomized, controlled study. J Food Sci. 2017;82(7):1750-6. doi: 10.1111/1750-3841.13752, PMID 28708316.

Ras RT, Koppenol WP, Garczarek U, Otten-Hofman A, Fuchs D, Wagner F. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism. Nutr Metab Cardiovasc Dis. 2016;26(4):302-9. doi: 10.1016/j.numecd.2015.11.007, PMID 26806045.

Alvarez Sala A, Blanco Morales V, Cilla A, Silvestre RA, Hernandez Alvarez E, Granado Lorencio F. A positive impact on the serum lipid profile and cytokines after the consumption of a plant sterol-enriched beverage with a milk fat globule membrane: a clinical study. Food Funct. 2018;9(10):5209-19. doi: 10.1039/c8fo00353j, PMID 30206618.

National Center for Biotechnology Information. PubChem compound summary for CID 222284, beta-sitosterol; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/beta-sitosterol. [Last accessed on 06 Dec 2021]

Manral C, Roy S, Singh M, Gautam S, Yadav RK, Rawat JK. Effect of β-sitosterol against methyl nitrosourea-induced mammary gland carcinoma in albino rats. BMC Complement Altern Med. 2016;16:260. doi: 10.1186/s12906-016-1243-5, PMID 27473871.

Kasmas SH, Izar MC, França CN, Ramos SC, Moreira FT, Helfenstein T. Differences in synthesis and absorption of cholesterol of two effective lipid-lowering therapies. Braz J Med Biol Res. 2012;45(11):1095-101. doi: 10.1590/s0100-879x2012007500118, PMID 22801416.

Ramprasath VR, Jenkins DJ, Lamarche B, Kendall CW, Faulkner D, Cermakova L. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr J. 2014;13:101. doi: 10.1186/1475-2891-13-101, PMID 25326876.

Sudeep HV, Thomas JV, Shyamprasad K. A double blind, placebo-controlled randomized comparative study on the efficacy of phytosterol-enriched and conventional saw palmetto oil in mitigating benign prostate hyperplasia and androgen deficiency. BMC Urol. 2020;20(1):86. doi: 10.1186/s12894-020-00648-9, PMID 32620155.

Tauriainen MM, Mannisto V, Kaminska D, Vaittinen M, Karja V, Kakela P. Serum, liver and bile sitosterol and sitostanol in obese patients with and without NAFLD. Biosci Rep. 2018;38(2):2-5. doi: 10.1042/BSR20171274, PMID 29540533.

National Center for Biotechnology Information. PubChem compound summary for CID 5281327, Brassicasterol; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/ compound/brassicasterol. [Last accessed on 06 Dec 2021]

Hassan STS. Brassicasterol with dual anti-infective properties against HSV-1 and mycobacterium tuberculosis, and cardiovascular protective effect: nonclinical in vitro and in silico assessments. Biomedicines. 2020;8(5):132. doi: 10.3390/biomedicines8050132, PMID 32456343.

Vanmierlo T, Popp J, Kolsch H, Friedrichs S, Jessen F, Stoffel Wagner B. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer’s disease. Acta psychiatr Scand. 2011;124(3):184-92. doi: 10.1111/j.1600-0447.2011.01713.x, PMID 21585343.

National Center for Biotechnology Information. PubChem compound summary for CID 92095, Sarsasapogenin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/sarsasapogenin. [Last accessed on 06 Dec 2021]

Moon E, Kim AJ, Kim SY. Sarsasapogenin increases melanin synthesis via induction of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells. Biomol Ther (Seoul). 2012;20(3):340-5. doi: 10.4062/biomolther.2012.20.3.340, PMID 24130933.

Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: A steroidal saponin from asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids. 2020;153:108529. doi: 10.1016/j.steroids.2019.108529, PMID 31672628.

National Center for Biotechnology Information. PubChem compound summary for CID 5281316, cucurbitacin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/cucurbitacin-B. [Last accessed on 10 Dec 2021]

Dandawate P, Subramaniam D, Panovich P, Standing D, Krishnamachary B, Kaushik G. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Sci Rep. 2020;10(1):1290. doi: 10.1038/s41598-020-57940-9, PMID 31992775.

Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms. Int J Oncol. 2018;52(1):19-37. doi: 10.3892/ijo.2017.4203, PMID 29138804.

Xu N, Zhang BB, Yang MZ, Bai XY, Liang ZQ, Cheng NN. Cucurbitacin B as a Chinese medicine monomer inhibits cell proliferation, invasion, and migration in nasopharyngeal carcinoma. J Nanomater. 2021;2021:1-12. doi: 10.1155/2021/5596780.

National Center for Biotechnology Information. PubChem compound summary for CID 99474, diosgenin 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/diosgenin. [Last accessed on 07 Dec 2021]

Cai T, Cocci A, Cito G, Giammusso B, Zucchi A, Chiancone F. The role of diallyl thiosulfinate associated with nuciferine and diosgenin in the treatment of premature ejaculation: A pilot study. [Archivio Italiano di Urologia, Andrologia: Organo Ufficiale [di] Societa Italiana di Ecografia Urologica e Nefrologica]. 2018;90(1):59-64.

Tohda C, Yang X, Matsui M, Inada Y, Kadomoto E, Nakada S. Diosgenin-rich yam extract enhances cognitive function: A placebo-controlled, randomized, double-blind, crossover study of healthy adults. Nutrients. 2017;9(10):10-6. doi: 10.3390/nu9101160, PMID 29064406.

Yang X, Feng Y, Liu Y, Ye X, Ji X, Sun L. Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway. Phytomedicine. 2021;87:153575. doi: 10.1016/j.phymed.2021.153575.

Jesus M, Martins AP, Gallardo E, Silvestre S. Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem. 2016;2016:4156293. doi: 10.1155/2016/4156293, PMID 28116217.

Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances. Oxid Med Cell Longev. 2020;2020:3153082. doi: 10.1155/2020/3153082, PMID 32215172.

National Center for Biotechnology Information. PubChem compound summary for CID 3086007, Ginsenosides; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/ compound/ginsenosides. [Last accessed on 07 Dec 2021]

Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol. 2018;9:423. doi: 10.3389/fphar.2018.00423, PMID 29765322.

National Center for Biotechnology Information. PubChem compound summary for CID 91453, Hecogenin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Hecogenin. [Last accessed on 07 Dec 2021]

Botura MB, Silva GD, Lima HG, Oliveira JV, Souza TS, Santos JD. In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats. Vet Parasitol. 2011;177(1-2):104-10. doi: 10.1016/j.vetpar.2010.11.039, PMID 21156340.

Santos Cerqueira G, Dos Santos, E Silva G, Rios Vasconcelos E, Fragoso de Freitas AP, Arcanjo Moura B, Silveira Macedo D. Effects of hecogenin and its possible mechanism of action on experimental models of gastric ulcer in mice. Eur J Pharmacol. 2012;683(1-3):260-9. doi: 10.1016/j.ejphar.2012.02.043, PMID 22426163.

National Center for Biotechnology Information. PubChem compound summary for CID 10098, Jervine; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Jervine. [Last accessed on 07 Dec 2021]

Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev. 2002;16(21):2743-8. doi: 10.1101/gad.1025302, PMID 12414725.

National Center for Biotechnology Information. PubChem compound summary for CID 167691, peiminine 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/peiminine. [Last accessed on 07 Dec 2021]

Tang Q, Wang Y, Ma L, Ding M, Li T, Nie Y. Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway. Oncol Rep. 2018;39(3):1299-305. doi: 10.3892/or.2018.6184, PMID 29328433.

Zhao B, Shen C, Zheng Z, Wang X, Zhao W, Chen X. Peiminine inhibits glioblastoma in vitro and in vivo through cell cycle arrest and Aautophagic Fflux Bblocking. Cellular Physiology and Biochemistry. 2018;51(4):1566-83. doi: 10.1159/000495646, PMID 30497066.

National Center for Biotechnology Information. PubChem compound summary for CID 6450278, guggulsterone 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/guggulsterone. [Last accessed on 06 Dec 2021]

Sabarathinam S, Rajappan Chandra SK, Thangavel Mahalingam V. CYP3A4 mediated pharmacokinetics drug interaction potential of Maha-Yogaraj Gugglu and E, Z guggulsterone. Scientific Reports. 2021;11(1):715. doi: 10.1038/s41598-020-80595-5, PMID 33436877.

Yamada T, Sugimoto K, Sugimoto K. Guggulsterone and its role in chronic diseases. Advances in Experimental Medicine and Biology. 2016;929:329-61. doi: 10.1007/978-3-319-41342-6_15, PMID 27771932.

Bhat AA, Prabhu KS, Kuttikrishnan S, Krishnankutty R, Babu J, Mohammad RM. Potential therapeutic targets of Guggulsterone in cancer. Nutrition and Metabolism (Lond). 2017;14(1):23. doi: 10.1186/s12986-017-0180-8, PMID 28261317.

Deng R. Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovascular Drug Reviews. 2007;25(4):375-90. doi: 10.1111/j.1527-3466.2007.00023.x, PMID 18078436.

National Center for Biotechnology Information. PubChem compound summary for CID 2724385, Digoxin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/digoxin. [Last accessed on 06 Dec 2021]

Abdul Rahim AH, MacIsaac RL, Jhund PS, Petrie MC, Lees KR, McMurray JJ. Efficacy and safety of digoxin in patients with heart failure and reduced ejection fraction according to diabetes status: an analysis of the Digitalis Investigation Group (DIG) trial. International Journal of Cardiology. 2016;209:310-6. doi: 10.1016/j.ijcard.2016.02.074, PMID 26913372.

Abdul Rahim AH, Shen L, Rush CJ, Jhund PS, Lees KR, McMurray JJV. Effect of digoxin in patients with heart failure and mid-range (borderline) left ventricular ejection fraction. European Journal of Heart Failure. 2018;20(7):1139-45. doi: 10.1002/ejhf.1160, PMID 29493058.

Kotecha D, Bunting KV, Gill SK, Mehta S, Stanbury M, Jones JC. Effect of digoxin vs bisoprolol for heart rate control in atrial fibrillation on patient-reported quality of life: the RATE-AF randomized clinical trial. Jama. 2020;324(24):2497-508. doi: 10.1001/jama.2020.23138, PMID 33351042.

Lam PH, Bhyan P, Arundel C, Dooley DJ, Sheriff HM, Mohammed SF. Digoxin use and lower risk of 30-day all-cause readmission in older patients with heart failure and reduced ejection fraction receiving β-blockers. Clinical Cardiology. 2018;41(3):406-12. doi: 10.1002/clc.22889, PMID 29569405.

Lopes RD, Rordorf R, De Ferrari GM, Leonardi S, Thomas L, Wojdyla DM. Digoxin and mortality in patients with atrial fibrillation. Journal of the American College of Cardiology. 2018;71(10):1063-74. doi: 10.1016/j.jacc.2017.12.060, PMID 29519345.

National Center for Biotechnology Information. PubChem compound summary for CID 441207, Digitoxin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/digitoxin. [Last accessed on 06 Dec 2021].

Bavendiek U, Berliner D, Davila LA, Schwab J, Maier L, Philipp SA. Rationale and design of the DIGIT-HF trial (digitoxin to improve ouTcomes in patients with advanced chronic Heart Failure): a randomized, double-blind, placebo-controlled study. Eur J Heart Fail. 2019;21(5):676-84. doi: 10.1002/ejhf.1452, PMID 30892806.

Holubarsch CJ, Colucci WS, Meinertz T, Gaus W, Tendera M. Survival and prognosis: investigation of crataegus extract WS 1442 in congestive heart failure (SPICE)-rationale, study design and study protocol. European Journal of Heart Failure. 2000;2(4):431-7. doi: 10.1016/s1388-9842(00)00109-4, PMID 11113721.

Ryden L, Hjalmarson AA, Kvasnicka J, Liander B. Haemodynamic effects of the antiarrhythmic quaternary ammonium compound QX-572 in man. British Heart Journal. 1975;37(1):65-73. doi: 10.1136/hrt.37.1.65, PMID 1089426.

Endo H, Yoshida H, Hasegawa M, Ohmi N, Horiuchi N, Hamada Y. Stereoselectivity and species difference in plasma protein binding of KE-298 and its metabolites. Biological and Pharmaceutical Bulletin. 2001;24(7):800-5. doi: 10.1248/bpb.24.800, PMID 11456121.

National Center for Biotechnology Information. PubChem compound summary for CID 6537502, digitonin; 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/ compound/digitonin. [Last accessed on 06 Dec 2021]

Bonventre JV. Calcium in renal cells. Modulation of calcium-dependent activation of phospholipase A2. Environmental Health Perspectives. 1990;84:155-62. doi: 10.1289/ehp.9084155, PMID 2190810.

Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial Governator-thinking outside the box. Biochimica et Biophysica Acta. 2006;1762(2):181-90. doi: 10.1016/j.bbadis.2005.10.006, PMID 16307870.

Vonck J, Schafer E. Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta. 2009;1793(1):117-24. doi: 10.1016/j.bbamcr.2008.05.019, PMID 18573282.

Ying M, Chen B, Tian Y, Hou Y, Li Q, Shang X. Nuclear import of human sexual regulator DMRT1 is mediated by importin-beta. Biochimica et Biophysica Acta. 2007;1773(6):804-13. doi: 10.1016/j.bbamcr.2007.03.006, PMID 17459496.

Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-9. doi: 10.1093/bioinformatics/bty707, PMID 30165565.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7(1):42717. doi: 10.1038/srep42717, PMID 28256516.

Kim D, Park JB, Choi WK, Lee SJ, Lim I, Bae SK. Simultaneous determination of β-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction of Zea mays L. Journal of Separation Science. 2016;39(21):4060-70. doi: 10.1002/jssc.201600589, PMID 27591043.

Zhao YY, Cheng XL, Liu R, Ho CC, Wei F, Yan SH. Pharmacokinetics of ergosterol in rats using rapid resolution liquid chromatography-atmospheric pressure chemical ionization multi-stage tandem mass spectrometry and rapid resolution liquid chromatography/tandem mass spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 2011;879(21):1945-53. doi: 10.1016/j.jchromb.2011.05.025, PMID 21664883.

Duchateau G, Cochrane B, Windebank S, Herudzinska J, Sanghera D, Burian A. Absolute oral bioavailability and metabolic turnover of β-sitosterol in healthy subjects. Drug Metabolism and Disposition: the Biological Fate of Chemical Dispos. 2012;40(10):2026-30. doi: 10.1124/dmd.112.046623, PMID 22826463.

Pei L, Ge S, Ye Y, Jiang Z, Liang X, Zhao W. Development and validation of a UPLC-MS/MS method for determination of sarsasapogenin-AA22 in rat plasma and its application to a pharmacokinetic study. Biomedical Chromatography: BMC. 2018;32(10):e4295. doi: 10.1002/bmc.4295, PMID 29797524.

Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC Complementary and Alternative Medicine. 2019;19(1):157-9157. doi: 10.1186/s12906-019-2568-7, PMID 31272429.

Salunkhe R, Gadgoli C, Naik A, Patil N. Pharmacokinetic profile and oral bioavailability of diosgenin, charantin, and hydroxychalcone from a polyherbal formulation. Front Pharmacol. 2021;12:629272-8629272. doi: 10.3389/fphar.2021.629272, PMID 33995027.

Li J, Zhang Y, Fan A, Li G, Liu Q. Pharmacokinetics and bioavailability study of ginsenoside Rk1 in rat by liquid chromatography/electrospray ionization tandem mass spectrometry. Biomedical Chromatography BMC. 2019;33(9):e4580. doi: 10.1002/bmc.4580, PMID 31077415.

Zheng B, Wang C, Song W, Ye X, Xiang Z. Pharmacokinetics and enterohepatic circulation of jervine, an antitumor steroidal alkaloid from Veratrum nigrum in rats. J Pharm Anal. 2019;9(5):367-72. doi: 10.1016/j.jpha.2019.04.004, PMID 31929946.

Wang Z, Cao F, Chen Y, Tang Z, Wang Z. Simultaneous determination and pharmacokinetics of peimine and peiminine in beagle dog plasma by UPLC-MS/MS after the oral administration of ritillariae ussuriensis maxim. and Fritillariae thunbergii Miq. Powder Molecules. 2018;23(7):1573. doi: 10.3390/molecules23071573, PMID 29958456.

Bhatta RS, Kumar D, Chhonker YS, Jain GK. Simultaneous estimation of E- and Z-isomers of guggulsterone in rabbit plasma using liquid chromatography tandem mass spectrometry and its application to pharmacokinetic study. Biomedical Chromatography: BMC. 2011;25(9):1054-60. doi: 10.1002/bmc.1574, PMID 21268049.

Parker RB, Yates CR, Soberman JE, Laizure SC. Effects of grapefruit juice on intestinal P-glycoprotein: evaluation using digoxin in humans. Pharmacotherapy. 2003;23(8):979-87. doi: 10.1592/phco.23.8.979.32881, PMID 12921244.

MacFarland RT, Marcus FI, Fenster PE, Graves PE, Perrier D. Pharmacokinetics and bioavailability of digitoxin by a specific assay. European Journal of Clinical Pharmacology. 1984;27(1):85-9. doi: 10.1007/BF02395212, PMID 6489430.

Published

07-11-2022

How to Cite

DUDEKULA, J. B., P. R., K., & D., R. (2022). BIOAVAILABILITY PROBLEMS OF PHYTOSTEROLS: A SYSTEMATIC REVIEW. International Journal of Applied Pharmaceutics, 14(6), 9–17. https://doi.org/10.22159/ijap.2022v14i6.45734

Issue

Section

Review Article(s)