DEVELOPMENT OF GUGGULSTERONE-LOADED PHYTOSOMES: A QUALITY BY DESIGN-BASED CHARACTERIZATION AND OPTIMIZATION STUDIES

Authors

  • JAMAL BASHA DUDEKULA Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, India https://orcid.org/0000-0003-2757-789X
  • JEBASTIN KOILPILLAI Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, India https://orcid.org/0000-0003-4430-1553
  • DAMODHARAN NARAYANASAMY Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51559

Keywords:

Phytosome, Bioavailability, Box–behnken design, Guggulsterone, Hyperlipidemia, Soy lecithin

Abstract

Objective: The primary objective of this study was to enhance drug delivery efficiency through the design and optimization of guggulsterone-pyrosomes, employing a 3-factor, 3-level box-behnken design.

Methods: The methodology involved a solvent evaporation technique utilizing guggulsterone and soy lecithin, with a systematic variation and optimization of critical factors such as soy lecithin and guggulsterone concentration, alongside temperature adjustments to refine the phytosome formulations. The characterizations of these formulations were extensive, with a particular emphasis on key quality attributes, notably percentage entrapment efficacy and drug release.

Results: The optimized guggulsterone-pyrosomes demonstrated impressive outcomes, showcasing a remarkable entrapment efficiency of 92.64% and a noteworthy drug release rate of 91.69% at 24 h. These formulations displayed heightened viability in selected cell lines, exhibiting cellular toxic c concentrations ranging from 253.39 to 330.44 µg/ml. Moreover, they exhibited stability under stressed conditions from a physicochemical perspective. The particle size was measured at 137.8 nm, with a zeta potential of-25.3 mV.

Conclusion: Significantly, the extended drug release from guggulsterone-pyrosomes adhered to first-order kinetics with Fickian diffusion. In summary, this study underscores the efficacy of the box-behnken design in crafting optimized guggulsterone-pyrosomes, showcasing their potential as promising drug delivery carriers. The enhanced drug delivery platform exhibits significant promise in amplifying antihyperlipidemic effects, attributed to the improved performance and stability of these innovative phytosomes

Downloads

Download data is not yet available.

References

Feynman RP. Theres plenty of room at the bottom an invitation to enter a new field of physics. Eng Sci Mag Cal Inst Technol. 1960;23(22):1-7.

Yusuf A, Almotairy AR, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles physicochemical properties on responses in biological systems. Polymers. 2023 Jan;15(7):1596. doi: 10.3390/polym15071596, PMID 37050210.

Shriram RG, Moin A, Alotaibi HF, Khafagy ES, Al Saqr A, Abu Lila AS. Phytosomes as a plausible nano delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals (Basel). 2022 Jun 24;15(7):790. doi: 10.3390/ph15070790, PMID 35890088.

Swain B, Koilpillai J, Narayanasamy D. Systematic review on recent advancements and liposomal technologies to develop stable liposome. Curr Trends Biotechnol Pharm. 2023 Feb 20;17(1):735-48. doi: 10.5530/ctbp.2023.1.13.

Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics. 2021 Sep 15;13(9):1475. doi: 10.3390/pharmaceutics13091475, PMID 34575551.

Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S. Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine. 2021;16:6983-7022. doi: 10.2147/IJN.S318416, PMID 34703224.

Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C. Phyto phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019 May;14(3):265-74. doi: 10.1016/j.ajps.2018.05.011, PMID 32104457.

Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res. 2023 Mar;33(1):1-33. doi: 10.1080/08982104.2022.2069809, PMID 35543241.

Chi C, Zhang C, Liu Y, Nie H, Zhou J, Ding Y. Phytosome nanosuspensions for silybin phospholipid complex with increased bioavailability and hepatoprotection efficacy. Eur J Pharm Sci. 2020 Mar 1;144:105212. doi: 10.1016/j.ejps.2020.105212, PMID 31923602.

Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin phospholipid phytosome (APLC) for improved solubility in vivo bioavailability and antioxidant potential. Eur J Pharm Sci. 2017 Oct 15;108:36-49. doi: 10.1016/j.ejps.2016.12.009, PMID 27939619.

Zeng Q Ping, Liu Z Hong, Huang A Wen, Zhang J, Song H Tao. Preparation and characterization of silymarin synchronized release microporous osmotic pump tablets. Drug Des Dev Ther. 2016 Jan 29;10:519-31. doi: 10.2147/DDDT.S91571, PMID 26889080.

Vargas Mendoza N, Madrigal Santillan E, Morales Gonzalez A, Esquivel Soto J, Esquivel Chirino C, Garcia Luna Y, Gonzalez Rubio M. Hepatoprotective effect of silymarin. World J Hepatol. 2014;6(3):144-9. doi: 10.4254/wjh.v6.i3.144, PMID 24672644.

Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res. 2017 Jun;7(3):416-27. doi: 10.1007/s13346-017-0372-9, PMID 28324320.

Alshahrani SM. Optimization and characterization of cuscuta reflexa extract loaded phytosomes by the box behnken design to improve the oral bioavailability. J Oleo Sci. 2022 Apr 29;71(5):671-83. doi: 10.5650/jos.ess21318, PMID 35387912.

Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm. 2006 Jan 3;307(1):77-82. doi: 10.1016/j.ijpharm.2005.10.001, PMID 16300915.

Blackburn GL, Wollner S, Heymsfield SB. Lifestyle interventions for the treatment of class III obesity: a primary target for nutrition medicine in the obesity epidemic1234. Am J Clin Nutr. 2010 Jan 1;91(1):289S-92S. doi: 10.3945/ajcn.2009.28473D, PMID 19906805.

Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J. 2014;7(2):399-409. doi: 10.13005/bpj/504.

Rupasinghe HP, Sekhon Loodu S, Mantso T, Panayiotidis MI. Phytochemicals in regulating fatty acid β-oxidation: potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther. 2016 Sep;165:153-63. doi: 10.1016/j.pharmthera.2016.06.005, PMID 27288729.

Sinal CJ, Gonzalez FJ. Guggulsterone: an old approach to a new problem. Trends Endocrinol Metab. 2002 Sep;13(7):275-6. doi: 10.1016/s1043-2760(02)00640-9, PMID 12163224.

Deng R. Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovasc Drug Rev. 2007;25(4):375-90. doi: 10.1111/j.1527-3466.2007.00023.x, PMID 18078436.

Urizar NL, Moore DD. Gugulipid: a natural cholesterol lowering agent. Annu Rev Nutr. 2003;23:303-13. doi: 10.1146/annurev.nutr.23.011702.073102, PMID 12626688.

Rathee S, Kamboj A. Optimization and development of antidiabetic phytosomes by the box-behnken design. J Liposome Res. 2018;28(2):161-72. doi: 10.1080/08982104.2017.1311913, PMID 28337938.

Martinez Ballesta M, Gil-Izquierdo A, Garcia Viguera C, Dominguez Perles R. Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new smart foods for health. Foods. 2018 May;7(5):72. doi: 10.3390/foods7050072, PMID 29735897.

Govindaram LK, Bratty MA, Alhazmi HA, Kandasamy R, Thangavel N, Ibrahim AM. Formulation biopharmaceutical evaluation and in vitro screening of polyherbal phytosomes for breast cancer therapy. Drug Dev Ind Pharm. 2022 Oct;48(10):552-65. doi: 10.1080/03639045.2022.2138911, PMID 36269296.

Setiadi S, Hidayah N. The effect of papain enzyme dosage on the modification of egg yolk lecithin emulsifier product through enzymatic hydrolysis reaction. I J Tech. 2018;9(2):380-9. doi: 10.14716/ijtech.v9i2.1073.

Ittadwar PA, Puranik PK. Novel umbelliferone phytosomes: development and optimization using experimental design approach and evaluation of photo-protective and antioxidant activity. Int J Pharm Pharm Sci. 2017 Jan 1;9(1):218-28. doi: 10.22159/ijpps.2017v9i1.14635.

B JJ, KR. Development and in vitro evaluation of phytosomes of ellagic acid. Asian J Pharm Clin Res. 2023 Mar 7;16(3):105-9. doi: 10.22159/ajpcr.2023.v16i3.47129.

Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: development optimization and in vitro studies. J Drug Deliv Sci Technol. 2020 Dec;60:102087, doi: 10.1016/j.jddst.2020.102087.

Zaki RM, Ali AA, El Menshawe SF, Bary AA. Formulation and in vitro evaluation of diacerein loaded niosomes. Int J Pharm Pharm Sci. 2014;6Suppl 2:515-21.

Udapurkar PP, Bhusnure OG, Kamble SR. Diosmin phytosomes: development optimization and physicochemical characterization. IJPER. 2018 Aug 1;52(4s):s29-36. doi: 10.5530/ijper.52.4s.73.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001 May 1;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Shaikh AA, Chaudhari PD, Holkar SS. A design of experiment approach for optimization and characterization of etodolac ternary system using spray drying. Int J Pharm Pharm Sci. 2017 Feb 1;9(2):233-40. doi: 10.22159/ijpps.2017v9i2.16087.

B JJ, P MR. Development and in vitro evaluation of phytosomes of naringin. Asian J Pharm Clin Res. 2019 Sep 7;12(9):252-6. doi: 10.22159/ajpcr.2019.v12i9.34798.

Koilpillai J, Narayanasamy D. Development and characterization of novel surface engineered depofoam: a QBD coupled failure modes and effects analysis risk assessment based optimization studies. J Liposome Res. 2024;34(1):1-17. doi: 10.1080/08982104.2023.2208662, PMID 37144416.

Cumming H, Rucker C. Octanol water partition coefficient measurement by a simple 1H NMR method. ACS Omega. 2017 Sep 30;2(9):6244-9. doi: 10.1021/acsomega.7b01102, PMID 31457869.

Papich MG, Martinez MN. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls. AAPS J. 2015 Jul;17(4):948-64. doi: 10.1208/s12248-015-9743-7, PMID 25916691.

Sedky NK, Braoudaki M, Mahdy NK, Amin K, Fawzy IM, Efthimiadou EK. Box–behnken design of thermo responsive nano liposomes loaded with a platinum(IV) anticancer complex: evaluation of cytotoxicity and apoptotic pathways in triple negative breast cancer cells. Nanoscale Adv. 2023 Sep 26;5(19):5399-413. doi: 10.1039/D3NA00368J, PMID 37767043.

Published

07-09-2024

How to Cite

DUDEKULA, J. B., KOILPILLAI, J., & NARAYANASAMY, D. (2024). DEVELOPMENT OF GUGGULSTERONE-LOADED PHYTOSOMES: A QUALITY BY DESIGN-BASED CHARACTERIZATION AND OPTIMIZATION STUDIES. International Journal of Applied Pharmaceutics, 16(5), 242–251. https://doi.org/10.22159/ijap.2024v16i5.51559

Issue

Section

Original Article(s)