APPLICATION OF MATHEMATICAL MODELING AND PHYSICO-CHEMICAL ANALYSIS METHODS IN THE PREDICTION OF BIOLOGICAL ACTIVITY AND QUALITY CONTROL OF GOSSYPOL DERIVATIVES
DOI:
https://doi.org/10.22159/ijap.2022v14i6.46052Keywords:
Gossypol-acetic acid, In silico methods, Pa/Pi ratios, Quality control, Analysis of physical and chemical propertiesAbstract
Objective: The purpose of this work was to evaluate in silico biological activity profiles of real and virtual molecular structures of gossypol derivatives and to develop methods of Physico-chemical analysis to control their quality.
Methods: Substance of gossypol-acetic acid (GAA) and 14 virtual derivatives; PASS and ChemicDescript QSAR methods; low angle and dynamic laser light scattering (LALLS, DLS) methods; IR Spectroscopy–Cary 630 Fourier Transform IR Spectrometer, UV spectrometry–Cary-60 spectrophotometer, Optical microscopy (Altami BIO 2 microscope); Spirotox method for a sample’s biological activity.
Results: A distance-based topological Balaban index (J) was successfully selected by ChemicDescript analysis; the Pa meaning by PASS Online program showed maximum (from 0.8 to 0.9) variations of antitumor and antiandrogenic and minimum of antiviral activities of GAA derivatives (Pa<0.5) despite the existing literature data. Microscopy and DLS methods demonstrated the values of high powder dispersion d=0.8 nm and weak stability of colloidal particles =-0.9 mV. According to UV data =42.4±0.8 (100 ml·g-1·cm-1) at λmax=380 nm. The LALLS method determined the GAA dissolution rate constant in ethanol: k=0.041±0.004 s-1. The calculated activation energy values of cell biosensor death process in 1 mmol solution of GAA in N,N-DMF: °bsEa=174.36±0.45 kJ·mol-1 in comparison with the solvent medium: °bsEa=213±1.55 kJ·mol-1
Conclusion: The developed approach of chemometric, laser and biotesting methods can be used for the identification of biologically active properties, as well as for qualitative analysis within the development of the standard for the pharmaceutical substance of natural polyphenols.
Downloads
References
Liu Y, Wang L, Zhao L, Zhang Y. Structure, properties of gossypol and its derivatives-from physiological activities to drug discovery and drug design. Nat Prod Rep. 2022;39(6):1282-304. doi: 10.1039/d1np00080b, PMID 35587693.
Zhi-Ming D, Yang-Wu C, Yong-Sheng W, Muhammad JA, Sheng-Ji Y, Ze-Qun D. Gossypol exposure induces mitochondrial dysfunction and oxidative stress during mouse oocyte in vitro maturation. Chem Biol Interact. 2021;348(6):109-42.
He Z, Nam S, Zhang H, Olanya OM. Chemical composition and thermogravimetric behaviors of Glanded and glandless cottonseed kernels. Molecules. 2022;27(1):316-26. doi: 10.3390/molecules27010316, PMID 35011547.
Wang L, Liu Y, Zhang Y, Yasin A, Zhang L. Investigating stability and tautomerization of gossypol-A spectroscopy study. Molecules. 2019;24(7):1286-97. doi: 10.3390/molecules24071286, PMID 30987000.
Pardeshi M, Deshmukh A, Gajare K. Ruellia tuberosa linn. acts as an anti-fertility agent that reduces sperm count, motility and viability in male swiss albino mice (mus-musculus). Int J Curr Pharm Sci. 2016;9(8):105-9.
Gadelha IC, Fonseca NB, Oloris SC, Melo MM, Soto-Blanco B. Gossypol toxicity from cottonseed products. Scientific World Journal. 2014;2014:231635. doi: 10.1155/2014/231635. PMID 24895646.
El-Lakkany NM, Elkattan HH, Elsisi AE. The ponatinib/gossypol novel combination provides enhanced anticancer activity against murine solid Ehrlich carcinoma via triggering apoptosis and inhibiting proliferation/angiogenesis. Toxicol Appl Pharmacol. 2021;432:115767. doi: 10.1016/j.taap.2021.115767. PMID 34699866.
Zbidah M, Lupescu A, Shaik N, Lang F. Gossypol-induced suicidal erythrocyte death. Toxicology. 2012;302(2-3):101-5. doi: 10.1016/j.tox.2012.09.010, PMID 23041711.
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol. 2022;20(1):143. doi: 10.1186/s12915-022-01344-w, PMID 35706035.
Keshmiri Neghab H, Goliaei B. Therapeutic potential of gossypol: an overview. Pharm Biol. 2014;52(1):124-8. doi: 10.3109/13880209.2013.832776, PMID 24073600.
Rao MV, Narechania MB. The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin. Drug Chem Toxicol. 2016;39(4):357-61. doi: 10.3109/01480545.2015.1039646, PMID 27071859.
Conceicao AA, Soares Neto CB, Ribeiro JAA, Siqueira FG, Miller RNG, Mendonca S. Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake. PLOS ONE. 2018;13(5):e0196164. doi: 10.1371/journal.pone.0196164, PMID 29791447.
Malyuchenko NV, Kotova EY, Kirpichnikov MP, Studitsky VM, Feofanov AV. PARP1 binding to DNA breaks and hairpins alters nucleosome structure. Moscow Univ Biol Sci Bull 2019;74(3):158-62. doi: 10.3103/S0096392519030076.
Zhang YS, Yuan J, Fang ZZ, Tu YY, Hu CM, Li G. Gossypol exhibits a strong influence towards UDP-glucuronosyltransferase (UGT) 1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances. Molecules. 2012;17(5):4896-903. doi: 10.3390/molecules17054896, PMID 22543504.
Balaban AT. Topological indices are based on topological distances in molecular graphs. Pure Appl Chem. 1983;55(2):199-206. doi: 10.1351/pac198855020199.
Popov VI. ChemicPen. Certificate of official registration of software No. 2005612073. Rospatent. 2005.
Popov VI. ChemicDescript. Certificate of official registration of software No. 2003612305. Rospatent. 2003.
ChemicPen CCPC. Available from: https://cetramax-chemicpen. [Last accessed on 01 Jul 2022]
Borodina YV, Filimonov DA, Poroikov VV. Computer-aided prediction of prodrug activity using the PASS system. Pharm Chem J. 1996;30(12):760-3. doi: 10.1007/BF02218831.
Koldina AM, Uspenskaya EV, Borodin AA, Pleteneva TV, Syroeshkin AV. Light scattering in research and quality control of deuterium-depleted water for pharmaceutical application. Int J App Pharm. 2019;11(2):271-8. doi: 10.22159/ijap.2019v11i5.34672.
Uspenskaya EV, Pleteneva TV, Syroeshkin AV, Kazimova IV, Elizarova TE, Odnovorov AI. Role of stable hydrogen isotope variations in water for drug dissolution managing. Curr Issues Pharm Med Sci. 2020;33(2):94-101. doi: 10.2478/cipms-2020-0017.
Syroeshkin AV, Uspenskaya EV, Pleteneva TV, Morozova MA, Maksimova TV, Koldina AM. Mechanochemical activation of pharmaceutical substances as a factor for modification of their physical, chemical and biological properties. Int J App Pharm. 2019;11(4):118-23. doi: 10.22159/ijap.2019v11i3.32413.
Michel D. Simply conceiving the arrhenius law and absolute kinetic constants using the geometric distributionю Phys. A Stat Mech Appl. 2013;329(5):4258-64.
Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Crit Rev Food Sci Nutr. 2012;52(9):830-51. doi: 10.1080/10408398.2012.667460, PMID 22698273.
Wang X, Howell C, Chen F. Gossypol-a polyphenolic compound from cotton plant. Adv Food Nutr Res. 2009;58(5):215-63.
Shaik B, Agrawal VK, Manikpuri AD, Khadikar PV. Prediction of 13C NMR chemical shift sum using topological indices: role of recently introduced Balaban F and G Indices. Interdiscip Sci. 2015;7(3):83-92.
Zeng Y, Ma J, Xu L, Wu D. Natural product gossypol and its derivatives in precision cancer medicine. Curr Med Chem. 2019;26(10):1849-73. doi: 10.2174/0929867324666170523123655, PMID 28545375.
Verma S, Kumar D, Kumar G, Singh AP. Impending contraceptives that might be a positive methodology towards the male contraception. Int J App Pharm. 2022;14(4):23-34. doi: 10.22159/ijap.2022v14i2.43941.
Borovskaya TG. Safety of the Russian antiviral drug Kagocel. Ter Arkh. 2017;89(11):93-9. doi: 10.17116/terarkh2017891193-99, PMID 29260752.
Odnovorov AI, Grebennikova ТV, Pleteneva TV, Garaev TM, Uspenskaya EV, Khodorovich NA. Physicochemical properties and biological activity of the new antiviral substance. Int J App Pharm. 2020;12(1):237-42. doi: 10.22159/ijap.2020v12i4.38136.
Abdelrahman SA, Yassin AA, Mirghani MES, Bashir NH. Determination of gossypol in Hamid and bt (seeni 1) cottonseed oil using fourier transform infrared spectroscopy. Borneo J Pharm. 2020;3(4):227-34. doi: 10.33084/bjop.v3i4.1592.
Uspenskaye EU, Anfimova EV, Pleteneva TV. Kinetics of active pharmaceutical ingredient solubility in water with different hydrogen isotopic content. Pharmaceutical Sciences 2018;80(2):318-24. doi: 10.4172/pharmaceutical-sciences.1000360.
Uspenskaya EV, Pleteneva TV, Hanh PM, Kazimova IV. Assessment of biology activity of the peeling substances by the physicochemical approaches on the spirostomum ambiguum cell model. Int J Pharm Pharm Sci. 2021;13(1):82-6.
Published
How to Cite
Issue
Section
Copyright (c) 2022 ELENA V. USPENSKAYA, POLYNA А. ZABORKINA, EVGENIYA A. RYNDINA, TATYANA V. PLETENEVA, MARIYA A. MOROZOVA, ILAHA V. KAZIMOVA, ANTON V. SYROESHKIN
This work is licensed under a Creative Commons Attribution 4.0 International License.