MOLECULAR DYNAMICS SIMULATIONS OF THE STK630921 INTERACTIONS TO INTERLEUKIN-17A

Authors

  • FRANSISCUS DEDDY RIANDONO Faculty of Pharmacy, Sanata Dharma University, Campus 3 Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia https://orcid.org/0000-0002-9369-3779
  • ENADE PERDANA ISTYASTONO Faculty of Pharmacy, Sanata Dharma University, Campus 3 Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia https://orcid.org/0000-0002-8344-5587

DOI:

https://doi.org/10.22159/ijap.2023v15i1.46369

Keywords:

Interleukin 17-A, Molecular Docking, Molecular Dynamics Simulations, MM/PBSA, YASARA-Structure, PyPLIF HIPPOS

Abstract

Objective: This research aimed to investigate the stability of the STK630921-Interleukin 17A (IL-17A) complex and to predict important residues that interact during molecular dynamics simulations.

Methods: Molecular docking simulations were performed, followed by molecular dynamics (MD) simulations and the free energy of binding calculations using YASARA-Structure. The identification of interacting residues was done using PyPLIF HIPPOS. Molecular docking simulations were performed on the IL-17A binding pocket with the compound 4-[({N-[(4-Oxo-3,4-dihydro-1-phthalazinyl) acetyl] alanyl} amino) methyl] cyclohexane carboxylic acid or known as STK630921. The best-docked pose was selected for the 50 ns MD simulations production run. The MD simulations snapshots were then analyzed to see the stability of IL-17A and for the identification of interacting residues, followed by Molecular Mechanics/Poisson–Boltzmann and surface area (MM/PBSA) analysis for the free energy of binding calculations.

Results: STK630921 is relatively able to stabilize IL-17A. Important interaction residues identified during the MD simulations were: Thr35(A), Pro37(A), Tyr62(A), Pro63(A)(B), Ile66(A)(B), Trp67(A), Ile96(A)(B), Val98(A)(B) and Val117(A)(B).

Conclusion: STK630921 disrupts the interaction of IL-17A to its receptor by binding and stabilizing IL17A.

Downloads

Download data is not yet available.

References

Ma J, Li YJ, Chen X, Kwan T, Chadban SJ, Wu H. Interleukin 17A promotes diabetic kidney injury. Sci Rep. 2019;9(1):2264. doi: 10.1038/s41598-019-38811-4, PMID 30783187.

Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379-90. doi: 10.1007/s12016-018-8702-3, PMID 30109481.

Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2018;5:364. doi: 10.3389/fmed.2018.00364. PMID 30693283.

Syngle A, Verma I, Kaur S, Syngle T. Interleukin-17 inhibition with secukinumab improves sudomotor dysfunction in psoriatic arthritis. Int J Pharm Pharm Sci. 2018 Mar 1;10(3):167-9. doi: 10.22159/IJPPS.2018V10I3.22660.

Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim HY. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis. 2012 Apr;33(4):931-6. doi: 10.1093/carcin/bgs106, PMID 22354874.

Kuriya G, Uchida T, Akazawa S, Kobayashi M, Nakamura K, Satoh T. Double deficiency in IL-17 and IFN-γ signaling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia. 2013 Aug;56(8):1773-80. doi: 10.1007/s00125-013-2935-8, PMID 23699989.

Coto E, Gomez J, Suarez B, Tranche S, Diaz Corte C, Ortiz A. Association between the IL17RA rs4819554 polymorphism and reduced renal filtration rate in the Spanish RENASTUR cohort. Hum Immunol. 2015 Mar;76(2-3):75-8. doi: 10.1016/j.humimm.2015.01.027. PMID 25636567.

Baharlou R, Ahmadi Vasmehjani A, Davami MH, Faraji F, Atashzar MR, Karimipour F. Elevated levels of T-helper 17-associated cytokines in diabetes type i patients: indicators for following the course of disease. Immunol Invest. 2016;45(7):641-51. doi: 10.1080/08820139.2016.1197243, PMID 27611173.

Zhang N, Tai J, Qu Z, Zhang Z, Zhao S, He J. Increased CD4+CXCR5+T follicular helper cells in diabetic nephropathy. Autoimmunity. 2016 Sep;49(6):405-13. doi: 10.1080/08916934.2016.1196677, PMID 27477820.

Lavoz C, Matus YS, Orejudo M, Carpio JD, Droguett A, Egido J. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 2019;95(6):1418-32. doi: 10.1016/j.kint.2018.12.031. PMID 30982673.

Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: worldwide difference of prevalence and risk factors. J Nephropharmacol. 2016;5(1):49-56. PMID 28197499.

Cheng HT, Xu X, Lim PS, Hung KY. Worldwide epidemiology of the diabetes-related end-stage renal disease, 2000-2015. Diabetes Care. 2021;44(1):89-97. doi: 10.2337/dc20-1913, PMID 33203706.

Coates PT, Wong G. Current controversies in nephrology-how to cross-match for transplantation? Kidney Int. 2020;97(4):662-3. doi: 10.1016/j.kint.2020.02.002.

Dhodi JB, Mestry SN, Juvekar AR. Diabetic nephropathy-genesis, prevention and treatment. Int J Pharm Pharm Sci. 2014 Sep 1:42-7.

Suyama K, Sakai D, Hirayama N, Nakamura Y, Matsushita E, Terayama H. Effects of interleukin-17A in nucleus pulposus cells and its small-molecule inhibitors for intervertebral disc disease. J Cell Mol Med. 2018;22(11):5539-51. doi: 10.1111/jcmm.13828, PMID 30207057.

Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015 May 15;36(13):996-1007. doi: 10.1002/jcc.23899, PMID 25824339.

Istyastono EP, Radifar M, Yuniarti N, Prasasty VD, Mungkasi S. PyPLIF HIPPOS: A molecular interaction fingerprinting tool for docking results of AutoDock Vina and PLANTS. J Chem Inf Model. 2020 Aug 24;60(8):3697-702. doi: 10.1021/acs.jcim.0c00305. PMID 32687350.

Liu S, Dakin LA, Xing L, Withka JM, Sahasrabudhe VPV, Li W. Binding site elucidation and structure-guided design of macrocyclic IL-17A antagonists. Sci Rep. 2016;6:30859. doi: 10.1038/srep30859, PMID 27527709.

Krieger E. YASARA MACRO-docking a ligand to a receptor. Available from: http://www.yasara.org/dock_run.mcr. [Last accessed on 15 Mar 2022]

Krieger E. YASARA MACRO-running an accurate molecular dynamics simulation in water with slow, normal or fast speed. Available from: http://www.yasara.org/md_run.mcr. [Last accessed on 15 Mar 2022]

Krieger E. YASARA MACRO-analyzing the ligand binding energy during a molecular dynamics simulation. Available from: http://www.yasara.org/md_analyzebindenergy.mcr. [Last accessed on 15 Mar 2022]

Istyastono EP, Octa Riswanto FDO. Molecular dynamics simulations of the caffeic acid interactions to dipeptidyl peptidase IV. Int J App Pharm. 2022 Jul 7:274-8. doi: 10.22159/ijap.2022v14i4.44631.

Liu K, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model. 2017 Oct 23;57(10):2514-22. doi: 10.1021/acs.jcim.7b00412. PMID 28902511.

Liu K, Watanabe E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des. 2017;31(2):201-11. doi: 10.1007/s10822-016-0005-2, PMID 28074360.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 1;31(2):455-61. doi: 10.1002/JCC.21334, PMID 19499576.

Korb O, Stutzle T, Exner TE. Empirical scoring functions for advanced Protein-Ligand docking with PLANTS. J Chem Inf Model. 2009;49(1):84-96. doi: 10.1021/ci800298z, PMID 19125657.

Perdana Istyastono E, Gani MR. Identification of interactions of ABT-341 to dipeptidyl peptidase IV during molecular dynamics simulations. J Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal). 2021 Oct 1;7(2):91–8. doi: 10.22487/J24428744.2021.

Lavoz C, Rayego Mateos S, Orejudo M, Opazo RL, Marchant V, Marquez Exposito L, Tejera Munoz A, Navarro Gonz JF. Could IL-17A be a novel therapeutic target in diabetic nephropathy. J Clin Med. 2020 Jan;9(1):272. doi: 10.3390/jcm9010272.

Published

07-01-2023

How to Cite

RIANDONO, F. D., & ISTYASTONO, E. P. (2023). MOLECULAR DYNAMICS SIMULATIONS OF THE STK630921 INTERACTIONS TO INTERLEUKIN-17A. International Journal of Applied Pharmaceutics, 15(1), 250–255. https://doi.org/10.22159/ijap.2023v15i1.46369

Issue

Section

Original Article(s)