FORMULATION OF NANOEMULGEL CONTAINING EXTRACT OF IMPATIENTS BALSAMINA L. AND ITS ANTIBACTERIAL ACTIVITY

Authors

  • ERINDYAH RETNO WIKANTYASNING Department of Pharmaceutics, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, 57169, Indonesia https://orcid.org/0000-0002-8997-7322
  • GUNAWAN SETIYADI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, 57169, Indonesia https://orcid.org/0000-0002-6881-687X
  • RATIH PRAMUNINGTYAS Faculty of Medical, Universitas Muhammadiyah Surakarta, Surakarta, 57169, Indonesia
  • MEGA DWI KURNIAWATI Department of Pharmaceutics, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, 57169, Indonesia
  • CHAI YEE HO Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

DOI:

https://doi.org/10.22159/ijap.2023v15i3.46670

Keywords:

Nanoemulgel, Gelling agent, Impatients balsamina, L., Optimization, Formulation

Abstract

Objective: This study aimed to optimize the nanoemulgel formulation for balsam leaves (Impatients balsamina L.) extract and determine its antibacterial activity.

Methods: Balsam leaves were extracted using the maceration method using ethanol. The nanoemulsion of balsam leaves ethanol extract was prepared with various oil, surfactants, and co-surfactant concentrations. Characterization was conducted on the nanoemulsion formed, including transmittance, droplet size, polydispersity index, and zeta potential. The chosen nanoemulsion formula was then transformed into a gel preparation using various gelling agent concentrations, i.e., Carbopol 940 and chitosan, and optimized using the Design-Expert v13 software with the simplex lattice design method.

Results: The study discovered the optimum nanoemulgel formula with a desirability value of 0.859. The ratio of Carbopol 940 with chitosan was 1.38% and 0.12%w/w, respectively, with an antibacterial activity inhibition zone against S. epidermidis of 22±2 mm in diameter.

Conclusion: The observed responses closely matched the predicted values provided by the optimization method. The optimized nanoemulgel formulation has the potential to develop as an antibacterial dosage form.

Downloads

Download data is not yet available.

References

Su BL, Zeng R, Chen JY, Chen CY, Guo JH, Huang CG. Antioxidant and antimicrobial properties of various solvent extracts from impatiens balsamina l. stems. J Food Sci. 2012;77(6):C614-9. doi: 10.1111/j.1750-3841.2012.02709.x, PMID 22582943.

Kang SN, Goo YM, Yang MR, Ibrahim RI, Cho JH, Kim IS. Antioxidant and antimicrobial activities of ethanol extract from the stem and leaf of impatiens balsamina L. (Balsaminaceae) at different harvest times. Molecules. 2013;18(6):6356-65. doi: 10.3390/molecules18066356, PMID 23760032.

Qin H, Jia L, Yan J, Li D, Sun L, Wang H. In vitro and in vivo antibacterial activities of impatiens balsamina water extraction. J Jilin Univ (Med Ed). 2013;39:60-4. doi: 10.7694/jldxyxb20130115.

Sakunphueak A, Panichayupakaranant P. Comparison of antimicrobial activities of naphthoquinones from impatiens balsamina. Nat Prod Res. 2012;26(12):1119-24. doi: 10.1080/14786419.2010.551297, PMID 21895457.

Wang YC, Li WY, Wu DC, Wang JJ, Wu CH, Liao JJ. In vitro activity of 2-methoxy-1,4-naphthoquinone and stigmasta-7,22-diene-3β-ol from impatiens balsamina L. against multiple antibiotic-resistant helicobacter pylori. Evid Based Complement Alternat Med. 2011;2011:704721. doi: 10.1093/ecam/nep147. PMID 19773391.

Clares B, Calpena AC, Parra A, Abrego G, Alvarado H, Fangueiro JF. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm. 2014;473(1-2):591-8. doi: 10.1016/j.ijpharm.2014.08.001, PMID 25102113.

Prajapati B. ‘‘Nanoemulgel” Innovative approach for topical gel based formulation. RRHOAJ 2018;1(2). doi: 10.32474/RRHOAJ.2018.01.000107.

Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736-51. doi: 10.1016/j.xphs.2017.03.042, PMID 28412398.

Sengupta P, Chatterjee B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharm. 2017;526(1-2):353-65. doi: 10.1016/j.ijpharm.2017.04.068, PMID 28461261.

Imanto T, Prasetiawan R, Wikantyasning ER. Formulasi dan karakterisasi sediaan nanoemulgel serbuk lidah buaya (Aloe Vera L.). Pharmacon J Farmasi Indones 2019;16(1):28-37. doi: 10.23917/pharmacon.v16i1.8114.

Bashir M, Ahmad J, Asif M, Khan SUD, Irfan M, Y Ibrahim AY. Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: in vitro and in vivo evaluation. Int J Nanomedicine. 2021;16:1457-72. doi: 10.2147/IJN.S294653. PMID 33654396.

Putriana NA, Rusdiana T, Prakoso M. Formulation and physical stability testing of chitosan gel from vaname shrimp shell (litopenaeus vannamei) with Carbopol 940 gelling agent. Indonesian J Pharm. 2019;1:62-6. doi: 10.24198/idjp.v1i3.21556.

Munawaroh R. Optimum conditions for extraction of antibacterial compounds from citrus aurantifolia fruit peel waste. Pharmacon J Farmasi Indones. 2017;14(1):34-9. doi: 10.23917/pharmacon.v14i1.5779.

Aparna C, Srinivas P, Patnaik KSKR. Enhanced transdermal permeability of telmisartan by a novel nanoemulsion gel. Int J Pharm Pharm Sci. 2015;7(4):335-42.

Salvia Trujillo L, Rojas Graü MA, Soliva Fortuny R, Martin Belloso O. Formulation of antimicrobial edible nanoemulsions with pseudoternary phase experimental design. Food Bioprocess Technol. 2014;7(10):3022-32. doi: 10.1007/s11947-014-1314-x.

Ih H, Fajriaty I, Wijaya T, Hafizh M. The potential ethnomedicine plant of impatiens balsamina leaves from pontianak, West Kalimantan, Indonesia for wound healing. Nusantara Biosci. 2018;10(1):58-64. doi: 10.13057/nusbiosci/n100109.

Qian H, Wang B, Ma J, Li C, Zhang Q, Zhao Y. Impatiens balsamina: an updated review on the ethnobotanical uses, phytochemistry, and pharmacological activity. J Ethnopharmacol. 2023;303:115956. doi: 10.1016/j.jep.2022.115956. PMID 36436713.

Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem. 2017;36:367-74. doi: 10.1016/j.ultsonch.2016.11.037, PMID 28069223.

Singh RD, Kapila S, Ganesan NG, Rangarajan V. A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. J Surfact & Detergents. 2022;25(3):303-19. doi: 10.1002/JSDE.12571.

El-Leithy ES, Makky AM, Khattab AM, Hussein DG. Nanoemulsion gel of nutraceutical co-enzyme Q10 as an alternative to the conventional topical delivery system to enhance skin permeability and anti-wrinkle efficiency. Int J Pharm Pharm Sci. 2017;9(10):207-17. doi: 10.22159/IJPPS.2017V9I11.21751.

Eid AM, Istateyeh I, Salhi N, Istateyeh T. Antibacterial activity of fusidic acid and sodium fusidate nanoparticles incorporated in pine oil nanoemulgel. Int J Nanomedicine. 2019;14:9411-21. doi: 10.2147/IJN.S229557. PMID 31819440.

Sinha P, Srivastava S, Mishra N, Singh DK, Luqman S, Chanda D. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev Ind Pharm. 2016;42(9):1434-45. doi: 10.3109/03639045.2016.1141931, PMID 26821208.

Sopyan I, Gozali D, Sriwidodo GRK, Guntina RK. Design-expert software (DoE): an application tool for optimization in pharmaceutical preparations formulation. Int J App Pharm. 2022;14:55-63. doi: 10.22159/IJAP.2022V14I4.45144.

Timung R, Barik CR, Purohit S, Goud VV. Composition and anti-bacterial activity analysis of citronella oil obtained by hydrodistillation: a process optimization study. Ind Crops Prod. 2016;94:178-88. doi: 10.1016/j.indcrop.2016.08.021.

Published

07-05-2023

How to Cite

WIKANTYASNING, E. R., SETIYADI, G., PRAMUNINGTYAS, R., KURNIAWATI, M. D., & YEE HO, C. (2023). FORMULATION OF NANOEMULGEL CONTAINING EXTRACT OF IMPATIENTS BALSAMINA L. AND ITS ANTIBACTERIAL ACTIVITY. International Journal of Applied Pharmaceutics, 15(3), 67–70. https://doi.org/10.22159/ijap.2023v15i3.46670

Issue

Section

Original Article(s)