Hydrogel, Superabsorbent polymer, Graft co-polymerization, Crosslinking, Natural polymer, Water absorption, Starch


Objective: The objective of the present study was to synthesize the hydrogel from natural polymer and evaluation of its physical and chemical properties.

Methods: Hydrogel was synthesized using graft co-polymerization technique from wheat starch, by crosslinking with acrylic acid. The product was purified, dried and micronized. It was then evaluated for water absorption and retention property at varying pH, FTIR, PXRD and Thermal analysis, microscopic, micromeritic and stability studies etc. Furthermore, the effect of NaOH treatment on prepared hydrogel material was studied.

Results: Result of the studies revealed that superabsorbent hydrogel (SAH) product shows good water absorption capacity of 120g/g at neutral pH. Maximum water absorption capacity was at pH 9 which is 146.28g/g. Product shows good thermal stability, less cohesiveness and is amorphous in nature. In hygroscopicity study weight gain by SAH was 6.65% only while for unpurified SAH and NaOH treated SAH, it was 10.5% and 23.42% respectively. NaOH treatment shows a decrease in water absorption capacity by more than 40% also there is change in surface morphology of the product. Additionally, hygroscopicity was more and degradation rate was faster for NaOH treated hydrogel.

Conclusion: Crosslinking with acrylic acid can form superabsorbent hydrogel material from the natural polymer such as wheat starch. The product shows excellent water absorption and retention capacity. pH affects water absorption capacity and shows maximum at pH 9 and at lower and higher pH it decreases to a significant level. There was decline in water absorption capacity and increase in hygroscopicity, when NaOH treatment is given to the SAH powder.


Download data is not yet available.


M TR, Chvs P, MY, CHP. Hydrogels the three dimensional networks: a review. Int J Curr Pharm Sci. 2021 Jan 15;12-7.

Dafader N, Ganguli S, Sattar M. Haque ME ul. Synthesis of Superabsorbent Acrylamide/Kappa-carrageenan blend hydrogel by gamma radiation. Malaysian. Polym J. 2009 Jan;4.

Panda N, Charan Panda K, Reddy AV, Reddy GVS. Process optimization, formulation and evaluation of hydrogel {guar gum-g-poly(acrylamide)} based doxofylline microbeads. Asian J Pharm Clin Res. 2014 Jul 1;7(3):60-5.

Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019 Oct;30(10):115. doi: 10.1007/s10856-019-6318-7, PMID 31599365.

Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P. A comprehensive review on plant-derived mucilage: characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers. 2021 Mar 28;13(7):1066. doi: 10.3390/polym13071066, PMID 33800613.

Guo L, Liu WL, Zhan, Wu L. Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res. 2005 Jun 1;44(12):4206-11. doi: 10.1021/ie0489406.

Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM. Hydrogels as controlled release devices in agriculture. Des Monomers Polym. 2002 Jan;5(1):39-65. doi: 10.1163/156855502760151580.

Tomar RS, Gupta I, Singhal R, Nagpal AK. Synthesis of poly(acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: study of swelling behaviour and network parameters. Des Monomers Polym. 2007 Jan;10(1):49-66. doi: 10.1163/156855507779763685.

Wu DQ, Wang T, Lu B, Xu XD, Cheng SX, Jiang XJ. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir. 2008 Sep 16;24(18):10306-12. doi: 10.1021/la8006876, PMID 18680318.

Bajpai SK, Saggu SPS. Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Des Monomers Polym. 2007 Jan;10(6):543-54. doi: 10.1163/156855507782401196.

Varaprasad K, Vimala K, Ravindra S, Reddy NN, Raju KM. Development of sodium carboxymethyl cellulose-based poly(acrylamide-co-2acrylamido-2-methyl-1-propane sulfonic acid) hydrogels for in vitro drug release studies of ranitidine hydrochloride an anti-ulcer drug. Polym Plast Technol Eng. 2011 Aug;50(12):1199-207. doi: 10.1080/03602559.2011.553872.

Khan F, Tare RS, Oreffo RO, Bradley M. Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew Chem Int Ed Engl. 2009 Jan 19;48(5):978-82. doi: 10.1002/anie.200804096, PMID 19115339.

Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001 Jul 1;101(7):1869-79. doi: 10.1021/cr000108x, PMID 11710233.

Peng Z, Shen Y. Study on biological safety of polyvinyl alcohol/collagen hydrogel as tissue substitute (I). Polym Plast Technol Eng. 2011 Jan 18;50(3):245-50. doi: 10.1080/03602559.2010.531438.

Katsoulos C, Karageorgiadis L, Vasileiou N, Mousafeiropoulos T, Asimellis G. Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration. Ophthalmic Physiol Opt. 2009 May;29(3):321-9. doi: 10.1111/j.1475-1313.2009.00645.x, PMID 19422564.

Yasuda H. Biocompatibility of nanofilm-encapsulated silicone and silicone-hydrogel contact lenses. Macromol Biosci. 2006 Feb 10;6(2):121-38. doi: 10.1002/mabi.200500153, PMID 16416462.

Hashem A, Ahmad F, Fahad R. Application of some starch hydrogels for the removal of mercury(II) ions from aqueous solutions. Adsorpt Sci Technol. 2008 Oct;26(8):563-79. doi: 10.1260/026361708788059866.

El-Arnaouty MB. Radiation synthesis and characterization study of imprinted hydrogels for metal ion adsorption. Polym Plast Technol Eng. 2010 Aug 17;49(10):963-71. doi: 10.1080/03602559.2010.482071.

Efron N, Morgan PB, Cameron ID, Brennan NA, Goodwin M. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom Vis Sci. 2007 Apr;84(4):328-37. doi: 10.1097/OPX.0b013e31804375ed, PMID 17435503.

Singh M, Bharti A, Kodavaty J. Overview of methods in oil spill technology. J Phys: Conf Ser. 2021 Nov 1;2070(1):012053. doi: 10.1088/1742-6596/2070/1/012053.

Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci. 2007 Apr 15;104(2):842-50. doi: 10.1002/app.25605.

Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002 Mar;235(1-2):1-15. doi: 10.1016/s0378-5173(02)00004-2, PMID 11879735.

Maolin Z, Jun L, Min Y, Hongfei H. The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem. 2000 Jun;58(4):397-400. doi: 10.1016/S0969-806X(99)00491-0.

Liu TG, Wang YT, Guo J, Liu TB, Wang X, Li BB. One-step synthesis of corn starch urea based acrylate superabsorbents. J Appl Polym Sci. 2017 Aug 20;134(32):45175. doi: 10.1002/app.45175.

Bhuyan MD, Chandra Dafader N, Hara K, Okabe H, Hidaka Y, Rahman Md. Synthesis of potato starch-acrylic-acid hydrogels by gamma radiation and their application in dye adsorption. Int J Polym Sci. 2016;2016:1-11. doi: 10.1155/2016/9867859.

Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J. 2004 Jul;40(7):1399-407. doi: 10.1016/j.eurpolymj.2004.01.039.

Desai S, Disouza J, Musle K, Avinash H. Solubility enhancement of ritonavir by hot melt extrusion. Int J Pharm Pharm Sci. 2016 Mar 1;8(3):309-12.

Buddhadev SS, Garala KC. Pharmaceutical cocrystals-a review. In: MDPI. The Com 2nd International Online Conference on Crystals; 2021. p. 14. doi: 10.3390/proceedings2020062014.

Nwachukwu N, Ofoefule SI. Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from gossypium herbaceum. Braz J Pharm Sci. 2020;56:e18660. doi: 10.1590/s2175-97902020000118060.

Adebowale BO, Oluwatomi O, Gbenga BL. Compressional properties of metronidazole tablet formulations containing aloe vera as binding agent. Int J Pharm Pharm Sci. 2014 Oct 1;6(10):261-4.

Raytthatha N, Vyas J. Development of bigels containing antifungal agent for vaginal infection. Int J Pharm Pharm Sci. 2022 Oct 1:38-42. doi: 10.22159/ijpps.2022v14i10.45134.

Czarnecka E, Nowaczyk J. Semi-natural superabsorbents based on starch-g-poly(acrylic acid): modification, synthesis and application. Polymers. 2020 Aug 10;12(8):1794. doi: 10.3390/polym12081794, PMID 32785178.

Karam FF, Alzayd AAM. Swelling behavior of poly (aam_ma) hydrogel matrix and study effects ph and ionic strength, enforcement in controlled release system. Int J App Pharm. 2018 Nov 22;10(6):318. doi: 10.22159/ijap.2018v10i6.28724.

Deraman NF, Mohamed NR, Romli AZ. Swelling kinetics and characterization of novel superabsorbent polymer composite based on mung bean starch-filled poly(acrylic acid)-graft-waste polystyrene. Int J Plast Technol. 2019 Dec;23(2):188-94. doi: 10.1007/s12588-019-09232-9.

Ismail H, Irani M, Ahmad Z. Utilization of waste polystyrene and starch for superabsorbent composite preparation. J Appl Polym Sci. 2013 Mar 15;127(6):4195-202. doi: 10.1002/app.37952.

Chen X, Chen M, Lin G, Yang Y, Yu X, Wu Y. Structural development and physicochemical properties of starch in caryopsis of super rice with different types of panicle. BMC Plant Biol. 2019 Dec;19(1):482. doi: 10.1186/s12870-019-2101-7, PMID 31703691.

Suhaimi S, Hasham R, Rosli N. Effects of formulation parameters on particle size and polydispersity index of Orthosiphon stamineus loaded nanostructured lipid carrier. J Adv Res Appl Sci Eng Technol. 2015 Nov;1:2462-1943.

Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Characterization of nanomaterials. Nanomater Food Appl. 2019:313-53.



How to Cite

BHELKAR, K. B., MOHARIR, K. S., & KALE, V. V. (2023). FORMULATION AND EVALUATION OF SUPERABSORBENT HYDROGEL FROM NATURAL POLYMER. International Journal of Applied Pharmaceutics, 15(2), 166–172.



Original Article(s)