• KESHAV S. MOHARIR Department of Pharmaceutics, Gurunanak College of Pharmacy, Nagpur
  • KRISHNAKANT B. BHELKAR Department of Pharmaceutics, Gurunanak College of Pharmacy, Nagpur
  • VINITA V. KALE Department of Pharmaceutics, Gurunanak College of Pharmacy, Nagpur
  • ABHAY M. ITTADWAR Department of Pharmaceutics, Gurunanak College of Pharmacy, Nagpur



Nanocellulose, Excipient, Drug delivery, Characterization, Water hyacinth


Objective: The main objective of this work was to understand the basic properties of crystalline nanocellulose (CNC) that can be useful as a novel excipient in pharmaceutical formulations. This covers the isolation and preparation of nanocellulose followed by characterization.

Methods: Cellulose was isolated from aquatic weed by autoclaving and bleaching. Cellulose to CNC conversion involved gluconic acid treatments at different concentrations (40%, 50% and 60%) followed by centrifugation and neutralization. CNC was further characterized by Differential Scanning Calorimetry (DSC) and Thermo gravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) for surface morphology, elemental analysis by Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), crystallinity index by X-Ray Diffraction (XRD), and optical microscopy.

Results: Acid concentration affects the moisture uptake, particle size, and yield of CNC. CNC size ranged from 350 nm to 900 nm with a crystallinity index 80% to 85%. Moisture uptake was 6.38±0.12% at 33% relative humidity. DSC and TGA established thermal stability over 200 °C. Nanocellulose has shown Angle of repose (28.81°), Carrs index (12.32), zeta potential (33mV) values and heavy metals within pharmacopoeial limits.

Conclusion: CNC from water hyacinth was prepared successfully by sustainable process. CNC physico-chemical characterization revealed the stable nature of CNC, suitable to be used as an excipient in pharmaceutical formulations.


Download data is not yet available.


Bin LK, Gaurav A, Mandal UK. A review on co-processed excipients: current and future trend of excipient technology. Int J Pharm Pharm Sci. 2019 Jan 1;11(1):1. doi: 10.22159/ijpps.2019v11i1.29265.

Kiran Misra S, Pathak K, Pathak D, Yadav R. Current updates on COVID-19 vaccines. Asian J Pharm Clin Res. 2021 Mar 7:17-23. doi: 10.22159/ajpcr.2021.v14i5.41061.

Vora R, Yamini S. Investigation of critical material attributes of nanocellulose in tablets. Asian J Pharm Clin Res. 2019 May 29:256-65.

Das S, Ghosh B, Sarkar K. Nanocellulose as sustainable biomaterials for drug delivery. Sens Int. 2022;3:100135. doi: 10.1016/j.sintl.2021.100135.

Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D. Nanocelluloses: A new family of nature-based materials. Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5438-66. doi: 10.1002/anie.201001273, PMID 21598362.

Salimi S, Sotudeh Gharebagh R, Zarghami R, Chan SY, Yuen KH. Production of nanocellulose and its applications in drug delivery: A critical review. ACS Sustainable Chem Eng. 2019 Oct 7;7(19):15800-27. doi: 10.1021/acssuschemeng.9b02744.

Kaur P, Sharma N, Munagala M, Rajkhowa R, Aallardyce B, Shastri Y. Nanocellulose: resources, physio-chemical properties, current uses and future applications. Front Nanotechnol. 2021;3. doi: 10.3389/fnano.2021.747329. Available from:

Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: extraction and application. Carbon Resour Convers. 2018 Apr;1(1):32-43. doi: 10.1016/j.crcon.2018.05.004.

Eichhorn SJ, Etale A, Wang J, Berglund LA, Li Y, Cai Y. Current international research into cellulose as a functional nanomaterial for advanced applications. J Mater Sci. 2022 Mar 3;57(10):5697-767. doi: 10.1007/s10853-022-06903-8.

Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 2015;22(2):935-69. doi: 10.1007/s10570-015-0551-0.

Dufresne A. Nanocellulose processing properties and potential applications. Curr For Rep. 2019;5(2):76-89. doi: 10.1007/s40725-019-00088-1.

Ma Y, Li B, Zhang X, Wang C, Chen W. Production of gluconic acid and its derivatives by microbial fermentation: process improvement based on integrated routes. Front Bioeng Biotechnol. 2022 May 16;10:864787. doi: 10.3389/fbioe.2022.864787, PMID 35651548.

Rose N, Kamta E, Namdeo P, Samal PK. Standardization strategies for herbal drugs-an overview. Res J Pharm Technol. 2008;1(4):310-2.

The control of humidity by saturated salt solutions. Available from: [Last accessed on 11 Feb 2023]

Vilela C, Morais JD, Silva ACQ, Munoz Gil D, Figueiredo FML, Silvestre AJD. Flexible nanocellulose/lignosulfonates ion-conducting separators for polymer electrolyte fuel cells. Nanomaterials (Basel). 2020 Aug 29;10(9):1713. doi: 10.3390/nano10091713, PMID 32872554.

Liu K. New and improved methods for measuring insoluble acid ash. Anim Feed Sci Technol. 2022;288:115282. doi: 10.1016/j.anifeedsci.2022.115282.

Beakawi Al-Hashemi HM, Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technol. 2018;330:397-417. doi: 10.1016/j.powtec.2018.02.003.

Patil S, Pandit A, Godbole A, Dandekar P, Jain R. Chitosan based co-processed excipient for improved tableting. Carbohydr Polym Technol Appl. 2021;2:100071. doi: 10.1016/j.carpta.2021.100071.

Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018 Mar 15;62(1):2841. doi: 10.4081/ejh.2018.2841, PMID 29569878.

Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959 Oct 2;29(10):786-94. doi: 10.1177/004051755902901003.

Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167-93. PMID 21119929.

Owonubi SJ, Agwuncha SC, Malima NM, Shombe GB, Makhatha EM, Revaprasadu N. Non-woody biomass as sources of nanocellulose particles: a review of extraction procedures. Front Energy Res. 2021 Apr 8;9. doi: 10.3389/fenrg.2021.608825.

Syafri E, Sudirman, Mashadi, Yulianti E, Deswita, Asrofi M. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J Mater Res Technol. 2019 Nov;8(6):6223-31. doi: 10.1016/j.jmrt.2019.10.016.

Wang J, Xu J, Zhu S, Wu Q, Li J, Gao Y. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Carbohydr Polym. 2021;251:117094. doi: 10.1016/j.carbpol.2020.117094, PMID 33142632.

Blanco D, Antikainen O, Raikkonen H, Yliruusi J, Juppo AM. Effect of colloidal silicon dioxide and moisture on powder flow properties: predicting in-process performance using image-based analysis. Int J Pharm. 2021;597:120344. doi: 10.1016/j.ijpharm.2021.120344, PMID 33545294.

Garg M, Apostolopoulou-Kalkavoura V, Linares M, Kaldeus T, Malmstrom E, Bergstrom L. Moisture uptake in nanocellulose: the effects of relative humidity, temperature and degree of crystallinity. Cellulose. 2021 Sep 29;28(14):9007-21. doi: 10.1007/s10570-021-04099-9.

Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym. 2015 Oct;130:275-9. doi: 10.1016/j.carbpol.2015.05.007, PMID 26076627.

Sartika D, Syamsu K, Warsiki E, Fahma F. Optimization of sulfuric acid concentration and hydrolysis time on crystallinity of nanocrystalline cellulose: A response surface methodology study. IOP Conf Ser.: Earth Environ Sci. 2019 Nov 1;355(1):012109. doi: 10.1088/1755-1315/355/1/012109.

Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J. Spray-dried cellulose nanofibers as a novel tablet excipient. AAPS PharmSciTech. 2011;12(4):1366-73. doi: 10.1208/s12249-011-9705-z, PMID 22005956.

Trivedi R, Prajapati P. Nanocellulose in the packaging industry. In:Nanocellulose materials. Elsevier; 2022. p. 43-66.

Kumar P, Miller K, Kermanshahi Pour A, Brar SK, Beims RF, Xu CC. Nanocrystalline cellulose derived from spruce wood: influence of process parameters. Int J Biol Macromol. 2022 Nov;221:426-34. doi: 10.1016/j.ijbiomac.2022.09.017, PMID 36084872.

Barbosa AM, Robles E, Ribeiro JS, Lund RG, Carreno NLV, Labidi J. Cellulose nanocrystal membranes as excipients for drug delivery systems. Materials (Basel). 2016 Dec 12;9(12):1002. doi: 10.3390/ma9121002, PMID 28774122.

Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: the importance of design in nanotechnology for drug delivery. Ther Deliv. 2012;3(2):181-94. doi: 10.4155/tde.11.156, PMID 22834196.

Parakhonskiy B, Zyuzin v MV, Yashchenok A, Carregal Romero S, Rejman J, Möhwald H. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnology. 2015;13(1):53. doi: 10.1186/s12951-015-0111-7, PMID 26337452.

Maver U, Velnar T, Gaberscek M, Planinsek O, Finsgar M. Recent progressive use of atomic force microscopy in biomedical applications. TrAC Trends Anal Chem. 2016;80:96-111. doi: 10.1016/j.trac.2016.03.014.

Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv. 2014 Aug 1;11(8):1237-53. doi: 10.1517/17425247.2014.917078, PMID 24809228.

Yurtsever A, Wang PX, Priante F, Morais Jaques Y, Miyazawa K, MacLachlan MJ. Molecular insights on the crystalline cellulose-water interfaces via three-dimensional atomic force microscopy. Sci Adv. 2022 Oct 14;8(41):eabq0160. doi: 10.1126/sciadv.abq0160, PMID 36240279.

Morris VJ, Mackie AR, Wilde PJ, Kirby AR, Mills ECN, Patrick Gunning A. Atomic force microscopy as a tool for interpreting the rheology of food biopolymers at the molecular level. LWT Food Sci Technol. 2001 Feb;34(1):3-10. doi: 10.1006/fstl.2000.0706.

Joshi J, Homburg SV, Ehrmann A. Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications-possibilities and limits. Polymers (Basel). 2022 Mar 21;14(6):1267. doi: 10.3390/polym14061267, PMID 35335597.

Negrea A, Gabor A, Davidescu CM, Ciopec M, Negrea P, Duteanu N. Rare earth elements removal from water using natural polymers. Sci Rep. 2018;8(1):316. doi: 10.1038/s41598-017-18623-0, PMID 29321487.

Alqaheem Y, Alomair AA. Microscopy and spectroscopy techniques for characterization of polymeric membranes. Membranes (Basel). 2020 Feb 24;10(2):33. doi: 10.3390/membranes10020033, PMID 32102383.

Brown RJ, Tsuzuki T, Rainey TJ. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol. 2016 Sep 1;7(3).

Daicho K, Saito T, Fujisawa S, Isogai A. The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl Nano Mater. 2018 Oct 26;1(10):5774-85. doi: 10.1021/acsanm.8b01438.

Tanpichai S, Biswas SK, Witayakran S, Yano H. Water hyacinth: A sustainable lignin-poor cellulose source for the production of cellulose nanofibers. ACS Sustainable Chem Eng. 2019 Dec 2;7(23):18884-93. doi: 10.1021/acssuschemeng.9b04095.

Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution. Biopolymers. 2000 Jan 1;57(4):257-62. doi: 10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3.

Rahimi M, Brown R, Tsuzuki T, Rainey T. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol. 2016 Jul 5;7:035004.

Chieng B, Lee S, Ibrahim N, Then Y, Loo Y. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp. Fibers Polym (Basel). 2017 Aug 11;9(12):355.

Radakisnin R, Abdul Majid MS, Jamir MRM, Jawaid M, Sultan MTH, Mat Tahir MF. Structural, morphological and thermal properties of cellulose nanofibers from napier fiber (Pennisetum purpureum). Materials (Basel). 2020 Sep 1;13(18). doi: 10.3390/ma13184125, PMID 32957438.

Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym. 2013;98(1):562-7. doi: 10.1016/j.carbpol.2013.06.029, PMID 23987382.

Patil TV, Patel DK, Dutta SD, Ganguly K, Santra TS, Lim KT. Nanocellulose, a versatile platform: Ffrom the delivery of active molecules to tissue engineering applications. Bioact Mater. 2022;9:566-89. doi: 10.1016/j.bioactmat.2021.07.006, PMID 34820589.

Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev. 2018;131:101-15. doi: 10.1016/j.addr.2018.06.009, PMID 29920294.

Lin SY, Wang SL. Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. Adv Drug Deliv Rev. 2012;64(5):461-78. doi: 10.1016/j.addr.2012.01.009, PMID 22300653.

Antlauf M, Boulanger N, Berglund L, Oksman K, Andersson O. Thermal conductivity of cellulose fibers in different size scales and densities. Biomacromolecules. 2021 Sep 13;22(9):3800-9. doi: 10.1021/acs.biomac.1c00643. PMID 34510907.



How to Cite




Original Article(s)