FORMULATION AND CHARACTERIZATION OF ZEAXANTHIN NANOEMULSION RADIANCE SERUM AS ANTIOXIDANT

Authors

  • FAJAR SETIAWAN Faculty of Pharmacy, Universitas Bakti Tunas Husada, Jalan Cilolohan No. 36 Kota Tasikmalaya, West Java, Indonesia 46115
  • TAOFIK RUSDIANA Faculty of Pharmacy, Universitas Padjadjaran, Jalan Ir. Soekarno Km. 21 Jatinangor, Kabupaten Sumedang, West Java, Indonesia 45363
  • DOLIH GOZALI Faculty of Pharmacy, Universitas Padjadjaran, Jalan Ir. Soekarno Km. 21 Jatinangor, Kabupaten Sumedang, West Java, Indonesia 45363
  • LUSI NURDIANTI Faculty of Pharmacy, Universitas Bakti Tunas Husada, Jalan Cilolohan No. 36 Kota Tasikmalaya, West Java, Indonesia 46115
  • KENI IDACAHYATI Faculty of Pharmacy, Universitas Bakti Tunas Husada, Jalan Cilolohan No. 36 Kota Tasikmalaya, West Java, Indonesia 46115
  • WINDA TRISNA WULANDARI Faculty of Pharmacy, Universitas Bakti Tunas Husada, Jalan Cilolohan No. 36 Kota Tasikmalaya, West Java, Indonesia 46115

DOI:

https://doi.org/10.22159/ijap.2022.v14s4.PP27

Keywords:

Radiance serum, Zeaxanthin, Antioxidant, Nanoemulsion

Abstract

Objective: This study aimed to increase the effectiveness of using zeaxanthin by developed nanoemulsion containing zeaxanthin which was then formulated into radiance serum for topical use.

Methods: Nanoemulsions are made using spontaneous nano emulsification methods/techniques, which are relatively simple technologically because they rely on the right combination of selected surfactants and co-surfactants. The optimization of the formula was carried out starting from determining the oil: surfactant: co-surfactant phase ratio and concentration of zeaxanthin. Nanoemulsion characterization in the form of physical characterization includes organoleptic tests, globule size and polydispersity index, zeta potential, pH and entrapment efficiency tests. The best results from nanoemulsion were then combined into serum preparations which were then tested for evaluation of the preparations, including organoleptic, homogeneity, viscosity, pH, spreadability, and antioxidant test.

Results: The results showed that the developed zeaxanthin nanoemulsion had a globule size in the range of 20-24 nm (with a normal globule size distribution curve), polydispersity index value of less than 0.3, zeta potential greater than (-20) mV and entrapment efficiency ranging from 80-85%.

Conclusion: The results of the evaluation showed that the serum radiance of zeaxanthin nanoemulsion had good physical, chemical and stability properties during storage with an IC50 value of zeaxanthin less than 50 ppm.

Downloads

Download data is not yet available.

References

Clark RM, Yao L, She L, Furr HC. A comparison of lycopene and astaxanthin absorption from corn oil and olive oil emulsions. Lipids. 2000;35(7):803-6. doi: 10.1007/s11745-000-0589-8, PMID 10941883.

Sparrow JRKS. The carotenoids of macular pigment and bisretinoid lipofuscin precursors in outer photoreceptor segments. In: Carotenoids: physical, chemical and biological functions and properties. Boca Raton, FL: CRC Press; 2009. p. 355-63.

Madhavi D, Kagan D, Seshadri S. A study on the bioavailability of a proprietary, sustained-release formulation of astaxanthin. Integr Med. 2018;17(3):38-42.

Sajilata MG, Singhal RS, Kamat MY. The carotenoid pigment zeaxanthin-a review. Comp Rev Food Sci Food Safety. 2008;7(1):29-49. doi: 10.1111/j.1541-4337.2007.00028.x.

Parker RS. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10(5):542-51. doi: 10.1096/fasebj.10.5.8621054, PMID 8621054.

Zaripheh S, Erdman JW. Factors that influence the bioavailability of xanthophylls. J Nutr 2002;132(3):531S-4S. doi: 10.1093/jn/132.3.531S. PMID 11880587.

Chitchumroonchokchai C, Failla ML. Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J Nutr. 2006;136(3):588-94. doi: 10.1093/jn/136.3.588, PMID 16484529.

Niesor EJ, Chaput E, Mary JL, Staempfli A, Topp A, Stauffer A. Effect of compounds affecting ABCA1 expression and CETP activity on the HDL pathway involved in intestinal absorption of lutein and zeaxanthin. Lipids. 2014;49(12):1233-43. doi: 10.1007/s11745-014-3958-8, PMID 25300953.

Choi HD, Kang HE, Yang SH, Lee MG, Shin WG. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br J Nutr. 2011;105(2):220-7. doi: 10.1017/ S0007114510003454, PMID 20819240.

Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29(1):3-14. doi: 10.1016/j.clindermatol.2010.07.001. PMID 21146726.

Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21:16-29. doi: 10.1016/ j.arr.2015.01.001. PMID 25653189.

Davinelli S, Bertoglio JC, Polimeni A, Scapagnini G. Cytoprotective polyphenols against chronological skin aging and cutaneous photodamage. Curr Pharm Des. 2018;24(2):99-105. doi: 10.2174/1381612823666171109102426, PMID 29119916.

Leyden JJ. Clinical features of ageing skin. Br J Dermatol. 1990;122Suppl 35:1-3. doi: 10.1111/j.1365-2133.1990.tb16118.x, PMID 2186777.

Nurdianti L, Aryani R, Indra I. Formulasi dan karakterisasi SNE (Self Nanoemulsion) astaxanthin dari Haematococcus pluvialis sebagai super antioksidan alami. J Sains Farm Klin. 2017;4(1):36-42.

Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173-82. doi: 10.1016/j.biopha.2004.02.001.

Rao SV, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development. Int J Pharm. 2008;362(1-2):2-9. doi: 10.1016/j.ijpharm.2008.05.018, PMID 18650038.

Kyatanwar AU, Jadhav KR, Kadam VJ. Self micro emulsifying drug delivery system (SMEDDS). J Pharm Res. 2010;3(2):75-83.

Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845-62. doi: 10.1007/s11051-008-9357-4.

Nurdianti L, Rusdiana T, Sopyan I. Antidiabetic activity of thin film containing astaxanthin-loaded nanoemulsion using carboxymethylcellulose sodium polymer on an alloxan-induced diabetic rabbit. J Adv Pharm Technol Res. 2020;11(4):189-93. doi: 10.4103/japtr.JAPTR_55_20, PMID 33425703.

Nurdianti L, Rusdiana T, Sopyan I, Putriana NA, Aiman HR, Fajria TR. Characteristic comparison of an intraoral thin film containing astaxanthin nanoemulsion using sodium alginate and gelatin polymers. Turk J Pharm Sci. 2021;18(3):289-95. doi: 10.4274/tjps.galenos.2020.25483. PMID 34157818.

Nurdianti L, Clara R, Suhendy H, Setiawan F, Idacahyati K. Formulation, characterization, and determination of the diffusion rate study of antioxidant serum containing astaxanthin nanoemulsion. Int J App Pharm. 2021;13(4):200-4. doi: 10.22159/ijap.2021.v13s4.43859.

Duma I, Purwanto P, Mardan MT. Aktivitas antibakteri dan uji sifat fisik sediaan gel dekokta sirih hijau (piper betle L) sebagai alternative pengobatan. Masitis Sapi, Majalah Farmaseutik. 2020;16(2):202-10.

Nurdianti L, Setiawan F Indra, Aryani R, Mudhakir, Anggadiredja K. Nanoemulsion based gel formulation of astaxanthin for enhanced permeability: potential as a transdermal drug delivery system. 2018;52(2):55-9.

Setiawan F, Nurdianti L, Sri N. Formulation and effectivity of the antioxidant gel preparation containing zeaxanthin as anti aging. Int J App Pharm. 2021;13Special Issue 4:152-6. doi: 10.22159/ijap.2021.v13s4.43846.

Molyneux P. The use of the stable free radical DPPH for estimating antioxidant activity. 2003, Slongklanarin. J Sci Technol. 2019;2003:211. doi: 10.1287/isre.6.2144.

Published

26-11-2022

How to Cite

SETIAWAN, F., RUSDIANA, T., GOZALI, D., NURDIANTI, L., IDACAHYATI, K., & WULANDARI, W. T. (2022). FORMULATION AND CHARACTERIZATION OF ZEAXANTHIN NANOEMULSION RADIANCE SERUM AS ANTIOXIDANT. International Journal of Applied Pharmaceutics, 14(4), 116–120. https://doi.org/10.22159/ijap.2022.v14s4.PP27

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 3 > >>