ANTIDIABETIC ACTIVITY OF NOVEL CHROMENE COMPOUND ISOLATED FROM PEPEROMIA PELLUCIDA L. KUNTH AND IN SILICO STUDY AGAINST DPP-IV, ALPHA-GLUCOSIDASE, ALPHA-AMYLASE, AND ALDOSE REDUCTASE FOR BLOOD GLUCOSE HOMEOSTASIS
DOI:
https://doi.org/10.22159/ijap.2022.v14s5.22Keywords:
Chromene, Diabetes mellitus, Dipeptidyl peptidase-IV, Aldose reductase, Glucose homeostasisAbstract
Objective: During the outbreak of COVID-19, diabetes mellitus (DM) and cardiovascular disease (CVD) become risk factors for severe adverse clinical outcomes in COVID-19 patients. DM is a complex metabolic disease originating from a process of requiring adequate insulin or due to insulin resistance. This in silico study reveals the molecular interaction of Peperochromene A ((S)-2-methyl-2-(4-methylpent-3-enyl)-6-(propan-2-ylidene)-3,4,6,7-tetrahydropyrano[4,3-g]chromen-9(2H)-one), a novel chromene compound isolated from Peperomia pellucida with four proteins involved in the homeostasis of blood glucose, namely dipeptidylpeptidase-IV (DPP-IV), α-glucosidase, α-amylase, and aldose reductase.
Methods: Molecular docking simulation of the ligands was performed by employing AutoDock 4.2 embedded in LigandScout at a certain position determined automatically by the program. The default parameters of the automatic settings were used to set the genetic algorithm parameters.
Results: Peperochromene A could interact with all four targets; however, it binds to alpha-glucosidase and α-amylase with Ki (inhibition constant) value better than that of acarbose, the enzymes’ known inhibitor. This chromene compound also reveals an inhibition constant to aldose reductase similar with that of the enzyme inhibitor.
Conclusion: The chromene isolated from Peperomia pellucida is the potential to be developed as an inhibitor of the proteins involved in the homeostasis of blood glucose; thus, it can be further explored for its antidiabetic activity.
Downloads
References
Galicia Garcia U, Benito Vicente A, Jebari S, Larrea Sebal A, Siddiqi H, Uribe KB. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/ijms21176275, PMID 32872570.
Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes. 2021 Aug;14:3567-602. doi: 10.2147/DMSO.S319895, PMID 34413662.
Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res. 2006;3(3):159-65. doi: 10.3132/dvdr.2006.024, PMID 17160910.
Aulifa DL, Adnyana IK, Levita J, Sukrasno S. 4-Hydroxyderricin isolated from the sap of angelica keiskei koidzumi: evaluation of its inhibitory activity towards dipeptidyl peptidase-IV. Sci Pharm. 2019 Nov 15;87(4):30. doi: 10.3390/scipharm87040030.
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol. 2012;3:87. doi: 10.3389/fphar.2012.00087, PMID 22582044.
Yim MB, Yim HS, Lee C, Kang SO, Chock PB. Protein glycation: creation of catalytic sites for free radical generation. Ann NY Acad Sci. 2001;928:48-53. doi: 10.1111/j.1749-6632.2001.tb05634.x, PMID 11795527.
Kishimoto M, Noda M. A pilot study of the efficacy of miglitol and sitagliptin for type 2 diabetes with a continuous glucose monitoring system and incretin-related markers. Cardiovasc Diabetol. 2011;10:115. doi: 10.1186/1475-2840-10-115, PMID 22189184.
Holman RR, Coleman RL, Chan JCN, Chiasson JL, Feng H, Ge J. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017 Nov;5(11):877-86. doi: 10.1016/S2213-8587(17)30309-1, PMID 28917545.
Spasov AA, Babkov DA, Osipov DV, Klochkov VG, Prilepskaya DR, Demidov MR. Synthesis, in vitro and in vivo evaluation of 2-aryl-4H-chromene and 3-aryl-1H-benzo[f]chromene derivatives as novel α-glucosidase inhibitors. Bioorg Med Chem Lett. 2019 Jan;29(1):119-23. doi: 10.1016/j.bmcl.2018.10.018, PMID 30340897.
Soni R, Durgapal SD, Soman SS, Georrge JJ. Design, synthesis and anti-diabetic activity of chromen-2-one derivatives. Arab J Chem. 2019 Jul;12(5):701-8. doi: 10.1016/j.arabjc.2016.11.011.
Susilawati Y, Nugraha R, Muhtadi A, Soetardjo S, Supratman U. (S)-2-Methyl-2-(4-methylpent-3-enyl)-6-(propan-2-ylidene)-3,4,6,7-tetrahydropyrano[4,3-g]chromen-9(2H)-one. Molbank. 2015 Apr 21;2015(2):M855. doi: 10.3390/M855.
Susilawati Y, Nugraha R, Krishnan J, Muhtadi A, Sutardjo S, Supratman U. A New antidiabetic compound 8, 9-dimethoxy ellagic acid from sasaladaan. Res J Pharm Biol Chem Sci A. 2017;8(1S):269-74.
L RH, R PKT. Ethnobotanical uses phytochemistry and pharmacological activities of peperomia pellucida (L.) kunth (Piperaceae)-a review. Int J Pharm Pharm Sci. 2018 Feb 1;10(2):1. doi: 10.22159/ijpps.2018v10i2.23417.
De Fatima Arrigoni-Blank M, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M. Anti-inflammatory and analgesic activity of peperomia pellucida (L.) HBK (Piperaceae). J Ethnopharmacol. 2004;91(2-3):215-8. doi: 10.1016/j.jep.2003.12.030, PMID 15120441.
Hidayati S. Antidiabetic activity of peperomia pellucida in streptozotocin-induced diabetic mice. J Farm Galen (Galenika J Pharmacy). 2021;7(2):120-30.
Biftu T, Sinha Roy R, Chen P, Qian X, Feng D, Kuethe JT, Hicks J, Lyons K, He H, Salituro G, Tong S, Patel S, Doss G, Petrov A, Wu J, Xu SS, Sewall C, Zhang X, Zhang B, Thornberry NA, Weber AE. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for the once-weekly treatment of type 2 diabetes. J Med Chem. 2014 Apr 24;57(8):3205–12.
Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A. Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J Biol Chem. 2013 Jun;288(26):19296-303. doi: 10.1074/jbc.M113.465211, PMID 23687304.
Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG. Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry. 2008 Mar 1;47(11):3332-44. doi: 10.1021/bi701652t, PMID 18284212.
Ahren B. DPP-4 inhibition and the path to clinical proof. Front Endocrinol (Lausanne). 2019 Jun 19;10:376. doi: 10.3389/fendo.2019.00376, PMID 31275243.
Sesti G, Avogaro A, Belcastro S, Bonora BM, Croci M, Daniele GF. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol. 2019 Jun 2;56(6):605-17. doi: 10.1007/s00592-018-1271-3, PMID 30603867.
Arulmozhiraja S, Matsuo N, Ishitsubo E, Okazaki S, Shimano H, Tokiwa H. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs–an ab initio fragment molecular orbital study. Plos One. 2016;11(11):e0166275. doi: 10.1371/journal.pone.0166275, PMID 27832184.
Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am. 1997 Sep;26(3):539-51. doi: 10.1016/s0889-8529(05)70266-8, PMID 9314014.
Derosa G, Maffioli P. Mini-special issue paper management of diabetic patients with hypoglycemic agents α-glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012;5:899-906. doi: 10.5114/aoms.2012.31621.
Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol (Tokyo). 2006;52(2):149-53. doi: 10.3177/jnsv.52.149. PMID 16802696.
Adisakwattana S, Charoenlertkul P, Yibchok Anun S. α-glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzyme Inhib Med Chem. 2009;24(1):65-9. doi: 10.1080/14756360801906947, PMID 18615280.
Zafar M, Khan H, Rauf A, Khan A, Lodhi MA. In silico study of alkaloids as α-glucosidase inhibitors: hope for the discovery of effective lead compounds. Front Endocrinol. 2016;7:153. doi: 10.3389/fendo.2016.00153, PMID 28066324.
Published
How to Cite
Issue
Section
Copyright (c) 2022 YASMIWAR SUSILAWATI, SANDRA MEGANTARA, JUTTI LEVITA
This work is licensed under a Creative Commons Attribution 4.0 International License.