POTENTIAL ACTIVITY OF KAEMPFEROL AS ANTI-PARKINSON’S; MOLECULAR DOCKING AND PHARMACOPHORE MODELLING STUDY

Authors

  • UMIL MAHFUDIN Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java 45363, Indonesia. Department of Pharmacy, Bumi Siliwangi Academic, Bandung, West Java, Indonesia https://orcid.org/0000-0002-1779-6979
  • ANAS SUBARNAS Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java 45363, Indonesia https://orcid.org/0000-0002-7048-1861
  • GOFARANA WILAR Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, West Java 45363, Indonesia https://orcid.org/0000-0002-0904-3117
  • FAIZAL HERMANTO Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, West Java 40531, Indonesia https://orcid.org/0000-0002-0904-3117

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47355

Keywords:

Antiparkinson’s, Kaempferol, Molecular docking, Pharmacophore modeling

Abstract

Objective: This study examined molecular docking and pharmacophore modeling to evaluate the potential antiparkinson activity of Kaempferol on various types and classes of receptors.

Methods: The molecular docking was performed on various classes of receptors, namely transcription factor Nrf2, A2A Adenosine, and catechol-O-methyl transferase, using auto dock 4.0.1 software.

Results: Kaempferol exhibited potential effects on two of the three tests (A2A adenosine and COMT receptors) as indicated by the lowest free energy binding values (-5.42 kcal/mol,-7.16 kcal/mol, and-8.33 kcal/mol, respectively). Kaempferol also had lower inhibitory constant values on transcription factor Nrf2, A2A adenosine, and COMT receptors (106.06 µM, 5.63 µM, and 779.51 nM, respectively). Kaempferol and the natural ligand had similar functional groups according to the critical components of the interaction between amino acid residues. The pharmacophore modeling revealed that hydroxyl functional groups strongly interact with crucial amino acid residues of the receptors.

Conclusion: This study concludes that kaempferol is a potential antiparkinson agent against multiple receptors.

Downloads

Download data is not yet available.

References

Zesiewicz TA. Parkinson disease. Continuum (Minneap Minn). 2019;25(4):896-918. doi: 10.1212/CON.0000000000000764, PMID 31356286.

Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019 Feb 1;34(2):180-98. doi: 10.1002/mds.27602, PMID 30653247.

Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020 Jan 1;27(1):27-42. doi: 10.1111/ene.14108, PMID 31631455.

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. doi: 10.1038/nrdp.2017.13, PMID 28332488.

Marsot A, Guilhaumou R, Azulay JP, Blin O. Levodopa in parkinson’s disease: a review of population pharmacokinetics/pharmacodynamics analysis. J Pharm Pharm Sci. 2017 Jul 26;20:226-38. doi: 10.18433/J30H04, PMID 28719359.

Ivanova SA, Alifirova VM, Pozhidaev IV, Freidin MB, Zhukova IA, Osmanova DZ. Polymorphisms of catechol-O-methyl transferase (COMT) gene in vulnerability to levodopa-induced dyskinesia. J Pharm Pharm Sci. 2018 Aug 3;21(1):340-6. doi: 10.18433/jpps29903, PMID 30075828.

Balestrino M, Adriano E. Beyond sports: efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev. 2019 Nov 1;39(6):2427-59. doi: 10.1002/med.21590, PMID 31012130.

Shalini K, Ilango K. Development, evaluation and RP-HPLC method for simultaneous estimation of quercetin, ellagic acid and kaempferol in a polyherbal formulation. Int J Appl Pharm. 2021 May 7;13(3):183-92.

Asojo OA, Gulnik SV, Afonina E, Yu B, Ellman JA, Haque TS. Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from plasmodium falciparum. J Mol Biol. 2003 Mar 14;327(1):173-81. doi: 10.1016/s0022-2836(03)00036-6, PMID 12614616.

Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics. 2008;8:8.14. doi: 10.1002/0471250953.bi0814s24, PMID 19085980.

Langer T, Hoffmann RD. Pharmacophore modelling: applications in drug discovery. Expert Opin Drug Discov. 2006;1(3):261-7. doi: 10.1517/17460441.1.3.261, PMID 23495846.

Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010 Jul 22;53(14):5061-84. doi: 10.1021/jm100112j, PMID 20345171.

Caporuscio F, Tafi A. Pharmacophore modelling: A forty-year-old approach and its modern synergies. Curr Med Chem. 2011;18(17):2543-53. doi: 10.2174/092986711795933669, PMID 21568893.

Djajadisastra J, Purnama HD, Yanuar A. In silico binding interaction study of mefenamic acid and piroxicam on human albumin. Int J App Pharm. 2017;9. doi: 10.22159/ijap.2017.v9s1.56_62.

Niu Y, Liu R, Guan C, Zhang Y, Chen Z, Hoerer S. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature. 2022 Jan 13;601(7892):280-4. doi: 10.1038/s41586-021-04212-9, PMID 34880493.

Seeliger D, De Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010;24(5):417-22. doi: 10.1007/s10822-010-9352-6, PMID 20401516.

Cournia Z, Allen B, Sherman W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model. 2017 Dec 26;57(12):2911-37. doi: 10.1021/acs.jcim.7b00564, PMID 29243483.

Luo H, Fokoue Nkoutche A, Singh N, Yang L, Hu J, Zhang P. Molecular docking for prediction and interpretation of adverse drug reactions. Comb Chem High Throughput Screen. 2018 May 24;21(5):314-22. doi: 10.2174/1386207321666180524110013, PMID 29792141.

Matta CF, Hernandez Trujillo J, Tang TH, Bader RFW. Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry. 2003;9(9):1940-51. doi: 10.1002/chem.200204626, PMID 12740840.

Ravichandran S, Singh N, Donnelly D, Migliore M, Johnson P, Fishwick C. Pharmacophore model of the quercetin binding site of the SIRT6 protein. J Mol Graph Model. 2014 Apr;49:38-46. doi: 10.1016/j.jmgm.2014.01.004, PMID 24491483.

Kumar S, Khatik GL, Mittal A. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo [3.2.1] octane scaffold. Curr Comput Aided Drug Des. 2020;16(2):145-54. doi: 10.2174/1573409914666181019165821. PMID 30345926.

Published

07-05-2023

How to Cite

MAHFUDIN, U., SUBARNAS, A., WILAR, G., & HERMANTO, F. (2023). POTENTIAL ACTIVITY OF KAEMPFEROL AS ANTI-PARKINSON’S; MOLECULAR DOCKING AND PHARMACOPHORE MODELLING STUDY. International Journal of Applied Pharmaceutics, 15(3), 43–48. https://doi.org/10.22159/ijap.2023v15i3.47355

Issue

Section

Original Article(s)