BOX-BEHNKEN DESIGN-BASED DEVELOPMENT AND CHARACTERIZATION OF POLYMERIC FREEZE-DRIED NANOPARTICLES OF ISRADIPINE FOR IMPROVED ORAL BIOAVAILABILITY

Authors

  • DEBASHISH GHOSE Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India https://orcid.org/0000-0001-9845-2758
  • CHINAM NIRANJAN PATRA Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India
  • SURYAKANTA SWAIN School of Pharmacy and Paramedical Sciences, K. K. University, Nalanda-803115, India
  • JAMMULA SRUTI Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47728

Keywords:

Isradipine, PLA, Quality by design, Critical quality attributes, Zeta potential, Pharmacokinetic parameters

Abstract

Objective: This study aimed to develop and optimize isradipine-loaded polymeric freeze-dried nanoparticles prepared by solvent shifting method with the help of the experiment design for improving oral drug bioavailability and minimizing dosing intervals.

Methods: Isradipine is a potent anti-hypertensive drug that is matrixed in polymeric freeze-dried nanoparticles using solvent shifting. In this work, a 3-factor, 3-level box-Behnken design was used to optimize the process parameters like a drug: PLA concentration (A), poloxamer 407 concentration (B), and stirring speed (C). In addition, responses were measured as dependent variables such as percentage drug release, particle size (nm), Zeta potential (mV), and % entrapment efficiency.

Results: Mathematical equations and response surface plots were used to relate the dependent and independent variables. The optimization model exhibited 97.36 % drug release, 153.14 nm particle size,-25.9 mV Zeta potential, and 78.25% entrapment efficiency, respectively. The observed responses were in close agreement with the predicted values of the optimized process. Fourier transform infrared spectroscopy, morphological studies, and in vitro drug release studies characterized the prepared polymeric nanoparticles.

Conclusion: The improved freeze-dried polymeric nanoparticle samples exhibited an in vitro drug release rate of more than 90% at 24h. Based on in vivo pharmacokinetic parameters, the isradipine-loaded polymeric nanoparticles show better bioavailability than pure drug's suspension form.

Downloads

Download data is not yet available.

References

Patwekar SL, Baramade MK. Controlled release approach to novel multiparticulate drug delivery system. Int J Pharm Pharm Sci. 2012;4:757-63.

Bernkop Schnurch A. Nanocarrier systems for oral drug delivery: do we really need them? Eur J Pharm Sci. 2013;49(2):272-7. doi: 10.1016/j.ejps.2013.03.008. PMID 23537503.

Zhang L, Wang S, Zhang M, Sun J. Nanocarriers for oral drug delivery. J Drug Target. 2013;21(6):515-27. doi: 10.3109/1061186X.2013.789033, PMID 23621127.

Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561-73. doi: 10.4314/tjpr.v5i1.14634.

Mulla MZ, Rahman MRT, Marcos B, Tiwari B, Pathania S. Poly lactic acid (PLA) nanocomposites: effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules. 2021;26(7):1967. doi: 10.3390/molecules26071967, PMID 33807351.

Wang Y, Jiang G, Qiu T, Ding F. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Dev Ind Pharm. 2012;38(9):1039-46. doi: 10.3109/03639045.2011.637052, PMID 22124381.

Ghose D, Patra CN, Ravi Kumar BVV, Swain S, Jena BR, Choudhury P. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes. Turk J Pharm Sci. 2021;18(4):452-64. doi: 10.4274/tjps.galenos.2020.08522. PMID 34496552.

Girotra P, Singh SK, Kumar G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int J Biol Macromol. 2016;85:92-101. doi: 10.1016/j.ijbiomac.2015.12.069. PMID 26724690.

Ahmed S, Gull A, Alam M, Aqil M, Sultana Y. Ultrasonically tailored, chemically engineered and ”QbD” enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study. Ultrason Sonochem. 2018;41:213-26. doi: 10.1016/j.ultsonch.2017.09.042. PMID 29137746.

Ramasahayam B, Eedara BB, Kandadi P, Jukanti R, Bandari S. Development of isradipine loaded self-nano emulsifying powders for improved oral delivery: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2015;41(5):753-63. doi: 10.3109/03639045.2014.900081, PMID 24641324.

Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Adaptation of quality by design-based development of isradipine nanostructured-lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J Pharm Sci. 2018;107(11):2914-26. doi: 10.1016/j.xphs.2018.07.021. PMID 30076853.

Dangre P, Gilhotra R, Dhole S. Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability. Drug Deliv Transl Res. 2016;6(5):610-21. doi: 10.1007/s13346-016-0318-7, PMID 27465619.

Bonde GV, Ajmal G, Yadav SK, Mittal P, Singh J, Bakde BV. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): optimisation and in vitro characterisation. Colloids Surf B Biointerfaces. 2020;185:110611. doi: 10.1016/j.colsurfb.2019.110611. PMID 31704609.

Park SY, Kang Z, Thapa P, Jin YS, Park JW, Lim HJ. Development of sorafenib loaded nanoparticles to improve oral bioavailability using a quality by design approach. Int J Pharm. 2019;566:229-38. doi: 10.1016/j.ijpharm.2019.05.064. PMID 31136778.

Garg NK, Tyagi RK, Singh B, Sharma G, Nirbhavane P, Kushwah V. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int J Pharm. 2016;499(1-2):301-20. doi: 10.1016/j.ijpharm.2015.12.061. PMID 26768725.

Venugopal V, Kumar KJ, Muralidharan S, Parasuraman S, Raj PV, Kumar KV. Optimization and in vivo evaluation of isradipine nanoparticles using Box-Behnken design surface response methodology. OpenNano. 2016;1:1-15. doi: 10.1016/j.onano.2016.03.002.

Havanoor SM, Manjunath K, Bhagawati ST, Veerapur VP. Isradipine loaded solid lipid nanoparticles for better treatment of hypertension-preparation, characterization and in vivo evaluation. Int J Biopharm. 2014;5:218-24.

Krishnamoorthy B, Habibur Rahman SM, Tamil Selvan N, Hari Prasad R, Rajkumar M, Siva Selvakumar M. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system. J Nanopart Res. 2015;17(1):34. doi: 10.1007/s11051-014-2818-z.

Selvadurai M, Kaur G, Santhi K, Parasuraman S. Pharmacokinetic evaluation of newly developed isradipine sustained release formulation. Int J Drug Deliv. 2015;7:126-40.

Kale AA, Patravale VB. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008;9(1):191-6. doi: 10.1208/s12249-008-9037-9, PMID 18446481.

Prisant LM, Elliott WJ. Drug delivery systems for treatment of systemic hypertension. Clin Pharmacokinet. 2003;42(11):931-40. doi: 10.2165/00003088-200342110-00001, PMID 12908851.

Javed MN, Kohli K, Amin S. Risk assessment integrated QbD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech. 2018;19(3):1377-91. doi: 10.1208/s12249-018-0951-1, PMID 29388027.

Dong M, Liu L, Zhang S. Nanostructural biomaterials and applications. J Nanomater. 2016;2016:1-2. doi: 10.1155/2016/5903201.

Mekjaruskul C, Sripanidkulchai B. Kaempferia parviflora nanosuspension formulation for scalability and improvement of dissolution profiles and intestinal absorption. AAPS PharmSciTech. 2020;21(2):52. doi: 10.1208/s12249-019-1588-4, PMID 31900735.

McGregor C, Bines E. The use of high-speed differential scanning calorimetry (Hyper-DSC) in the study of pharmaceutical polymorphs. Int J Pharm. 2008;350(1-2):48-52. doi: 10.1016/j.ijpharm.2007.08.015, PMID 17890030.

Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58(12-13):1274-325. doi: 10.1016/j.addr.2006.09.007. PMID 17097189.

Janga KY, Jukanti R, Velpula A, Sunkavalli S, Bandari S, Kandadi P. Bioavailability enhancement of zaleplon via proliposomes: role of surface charge. Eur J Pharm Biopharm. 2012;80(2):347-57. doi: 10.1016/j.ejpb.2011.10.010. PMID 22041602.

Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm. 2007;344(1-2):33-43. doi: 10.1016/j.ijpharm.2007.05.054. PMID 17616282.

Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237-49. doi: 10.1016/j.nano.2011.06.004. PMID 21704600.

Lacourciere Y, Poirier L, Dion D, Provencher P. Antihypertensive effect of isradipine administered once or twice daily on ambulatory blood pressure. Am J Cardiol. 1990;65(7):467-72. doi: 10.1016/0002-9149(90)90812-f, PMID 2137666.

Reddy DV, RAO AS. Preparation and evaluation of nanosponges based tramadol HCl c/r tablets using design of experiment. Int J App Pharm. 2022;14(3):86-94. doi: 10.22159/ijap.2022v14i3.44278.

Kakade P, Gite S, Patravale V. Development of atovaquone nanosuspension: quality by design approach. Curr Drug Deliv. 2020;17(2):112-25. doi: 10.2174/1567201817666191227095019, PMID 31880260.

Te Boekhorst BC, Jensen LB, Colombo S, Varkouhi AK, Schiffelers RM, Lammers T. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release. 2012;161(3):772-80. doi: 10.1016/j.jconrel.2012.05.004. PMID 22580113.

Deka T, Das MK, Das S, Das P, Singha LR. Box-behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in experimental animal model. Int J App Pharm. 2022;14(6):148-66. doi: 10.22159/ijap.2022v14i6.45867.

Shelar DB, Pawar SK, Vavia PR. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability. Drug Deliv Transl Res. 2013;3(5):384-91. doi: 10.1007/s13346-012-0081-3, PMID 25788346.

Jena GK, Patra CN, Panigrahi KC, Sruti J, Patra P, Parhi R. QbD enabled optimization of solvent shifting method for fabrication of PLGA-based nanoparticles for promising delivery of capecitabine for antitumor activity. Drug Deliv Transl Res. 2022;12(6):1521-39. doi: 10.1007/s13346-021-01042-0, PMID 34505271.

Published

07-07-2023

How to Cite

GHOSE, D., PATRA, C. N., SWAIN, S., & SRUTI, J. (2023). BOX-BEHNKEN DESIGN-BASED DEVELOPMENT AND CHARACTERIZATION OF POLYMERIC FREEZE-DRIED NANOPARTICLES OF ISRADIPINE FOR IMPROVED ORAL BIOAVAILABILITY. International Journal of Applied Pharmaceutics, 15(4), 60–70. https://doi.org/10.22159/ijap.2023v15i4.47728

Issue

Section

Original Article(s)