QUALITY BY DESIGN-DRIVEN FORMULATION DEVELOPMENT AND OPTIMIZATION OF ENALAPRIL MALEATE LOADED MUCOADHESIVE MICROSPHERES: IN VITRO AND IN VIVO CHARACTERIZATION

Authors

  • SOMESHWAR KOMATI PhD research scholar Pharmacy, Biju Patnaik University of Technology, Rourkela, Odisha and Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
  • MUDDANA ESWARA BHANOJI RAO Department of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and AHS, Banitabla, Uluberia, Howrah-711316, West Bengal, India
  • SURYAKANTA SWAIN School of Pharmacy and Paramedical Sciences, K. K. University, Nalanda-803115, Bihar, India https://orcid.org/0000-0002-1485-343X
  • DEBASHISH GHOSE Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Khodasinghi, Berhampur-760010, Ganjam, Odisha, India https://orcid.org/0000-0001-9845-2758

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47905

Keywords:

Mucoadhesion, Ionic gelation, Central composite design, Loose surface crystal study, In vitro drug release, Pharmacokinetics parameters, Stability studies

Abstract

Objective: The study is to formulate the enalapril maleate-loaded mucoadhesive microspheres with varied compositions of selected polymers for developing the oral controlled release formulations prepared by ionic gelation method and optimization through central composite design.

Methods: Systematic optimization of microspheres was accomplished by the central composite design and characterized for particle size, entrapment efficiency, in vitro drug release and ex vivo mucoadhesion strength, which indicated that microspheres were a consequence to be spherical and free-flowing in nature. The microspheres exhibited high drug entrapment efficiency and in vitro drug release in a sustained manner, which was considered to be dependent on the concentration of rate-controlling polymers. The microspheres are showed 389.2 to 850 µm particle size and 22.36 to 85.22 % encapsulation efficiency. In vitro studies indicated optimized formulation showed 89.26% drug release after 12h and reduced blood pressure effectively.

Results: The pharmacokinetic parameters were evaluated with Cmax of 75.39 µg/ml, tmax of 8h, and AUC of 53.55 µg/hr/ml, elimination rate constant of 0.0392 and t1/2 of 10h. The stability studies were conducted for 3 mo under various conditions and identified no significant deviations in selected key quality attributes.

Conclusion: The formulated mucoadhesive microspheres of enalapril maleate tend to reduce the blood pressure in the animal model, with the novel drug delivery approach in the efficient management of hypertension.

Downloads

Download data is not yet available.

References

Thomas W, Lee Y, Joseph RR. Controlled release drug delivery systems. Remingtons Pharm Sci. 2000:903-29.

Asija R, Sharma D, Mali KR. Development and evaluation of ethyl cellulose-based floating microspheres of atorvastatin by novel solvent evaporation matrix erosion method. J Pharm Chem. 2015;2:14-24.

Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015;17(6):1327-40. doi: 10.1208/s12248-015-9814-9, PMID 26276218.

Hadke AV, Pethe AM, Kesalkar MA. Nicorandil mucoadhesive microspheres: formulation development, physico-chemical and functional characterization. Int J App Pharm. 2023 Mar 7;15(2):123-30. doi: 10.22159/ijap.2023v15i2.46593.

Chaturvedi P, Soni PK, Paswan SK. Designing and development of gastroretentive mucoadhesive microspheres of cefixime trihydrate using spray dryer. Int J Appl Pharm. 2023 Mar 7;15(2):185-93.

Ipate AM, Hamciuc C, Kalvachev Y, Gherman S, Ochiuz L. New cryogels based on polymers and zeolite L for controlled enalapril maleate release. J Drug Deliv Sci Technol. 2018;44:505-12. doi: 10.1016/j.jddst.2018.02.008.

Swamy BY, Prasad CV, Prabhakar MN, Chowdoji Rao KC, Subha MCS, Chung I. Biodegradable chitosan-g-poly(methacrylamide) microspheres for controlled release of hypertensive drug. J Polym Environ. 2013;21(4):1128-34. doi: 10.1007/s10924-012-0554-y.

Ammar HO, Ghorab MM, Mahmoud AA, Noshi SH. Formulation of risperidone in floating microparticles to alleviate its extrapyramidal side effects. Future J Pharm Sci. 2016;2(2):43-59. doi: 10.1016/j.fjps.2016.08.001.

Vaja PN, Detroja CM. Formulation of mesalamine-loaded rectal mucoadhesive pellets for the treatment of inflammatory bowel disease using 32full factorial design. Int J App Pharm. 2022 Sep 7;14(5):88-94. doi: 10.22159/ijap.2022v14i5.45180.

Pratik NS, Bhavini NP, Chaganbhai NP. Simultaneous UV spectrophotometric method for estimation of enalapril maleate and lercanidipine HCl in synthetic mixture. Res J Pharm Technol. 2011;4:1118-22.

Singh B, Dahiya M, Saharan V, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part II: retrospect and prospects. Crit Rev Ther Drug Carrier Syst. 2005;22(3):215-94. doi: 10.1615/critrevtherdrugcarriersyst.v22.i3.10. PMID 15896189.

Bahadur KV, Thapa C, Ghimire P, Chaudhari P, Yadhav J. Formulation and optimization of enalapril maleate-loaded floating microsphere using box–behnken design in vitro study. J Appl Pharm Sci. 2020;10:095-104.

Verma S, Nagpal K, Singh SK, Mishra DN. Unfolding type gastroretentive film of cinnarizine based on ethyl cellulose and hydroxypropylmethylcellulose. Int J Biol Macromol. 2014;64:347-52. doi: 10.1016/j.ijbiomac.2013.12.030, PMID 24370473.

Abbas Z, Marihal S. Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: formulation optimization using factorial design, characterization, and in vitro evaluation. J Pharm Bioallied Sci. 2014;6(4):267-77. doi: 10.4103/0975-7406.142959, PMID 25400410.

Semalty M, Verma D, Semalty A. Development evaluation of microspheres of verapamil hydrochloride. Ind Drugs. 2011;48:34-8.

Alagusundaram M, Chetty MS, Umashankari K, Badarinath AV, Lavanya C, Ramkanth S. Microspheres as a novel drug delivery system: a review. Int J Chem Tech Res. 2009;1:526-34.

Swain S, Patro CN, Sruti J, Rao MEB. Design evaluation of sustained release solid dispersions of verapamil hydrochloride. Int J Pharm Sci Nanotechnol. 2011;3:1252-62.

Wang W, Zhang J, Yang S, Zhang H, Yang H, Yue G. Experimental study on the angle of repose of pulverized coal. Particuology. 2010;8(5):482-5. doi: 10.1016/j.partic.2010.07.008.

Subham B, Gaurav C, Dilipkumar P, Gosh AK. Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res. 2010;69:777-84.

Hemraj Ramteke K, Balaji Jadhav V, Kulkarni NS, Kharat AR, Diwate SB. Preparation, evaluation and optimization of multi particulate system of mebendazole for colon-targeted drug delivery by using natural polysaccharides. Adv Pharm Bull. 2015;5(3):361-71. doi: 10.15171/apb.2015.050, PMID 26504758.

Bhardwaj P, Chaurasia D, Singh R, Swarup A. Development and characterization of novel site-specific hollow floating microspheres bearing 5-Fu for stomach targeting. Scientific World Journal. 2014;2014:705259. doi: 10.1155/2014/705259. PMID 25383377.

Farooq U, Khan S, Nawaz S, Ranjha NM, Haider MS, Khan MM. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E100 and polycaprolactone: synthesis and in vitro evaluation. Des Monomers Polym. 2017;20(1):419-33. doi: 10.1080/15685551.2017.1326702, PMID 29491813.

Beringhs AO, Fonseca ABDS, De Campos AM, Sonaglio D. Association of PLGA microspheres to carrier pellets by fluid bed coating: a novel approach towards improving the flowability of microparticles. J Pharm (Cairo). 2018;2018:3874348. doi: 10.1155/2018/3874348. PMID 30057848.

Saravanan M, Bhaskar K, Maharajan G, Pillai KS. Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration. J Drug Target. 2011;19(2):96-103. doi: 10.3109/10611861003733979, PMID 20380621.

Swain S, Behera A, Dinda SC, Patra CN, Jammula S, Beg S. Formulation design, optimization and pharmacodynamic evaluation of sustained release mucoadhesive microcapsules of venlafaxine HCl. Indian J Pharm Sci. 2014;76(4):354-63. PMID 25284934.

Jiao Y, Pang X, Liu M, Zhang B, Li L, Zhai G. Recent progresses in bioadhesive microspheres via transmucosal administration. Colloids Surf B Biointerfaces. 2016;140:361-72. doi: 10.1016/j.colsurfb.2015.12.049. PMID 26774569.

Tamizharasi S, Sivakumar T, Rathi JC. Preparation and evaluation of aceclofenac floating oral delivery system. Pharm Sin. 2011;2:43-53.

Nayak AK, Hasnain MS, Beg S, Alam MI. Mucoadhesive beads of gliclazide: design, development and evaluation. Sci Asia. 2010;36:319-25.

Kapil R, Dhawan S, Beg S, Singh B. Buccoadhesive films for once-a-day administration of rivastigmine: systematic formulation development and pharmacokinetic evaluation. Drug Dev Ind Pharm. 2013;39(3):466-80. doi: 10.3109/03639045.2012.665926, PMID 22409834.

Sharma HK, Pradhan SP, Sarangi B. Preparation and in vitro evaluation of enteric controlled release pantoprazole loaded microbeads using natural mucoadhesive substance from Dillenia indica. Int J Pharm Tech Res. 2010;2:542-51.

Karna S, Chaturvedi S, Agrawal V, Alim M. Formulation approaches for sustained release dosage forms a review. Asian J Pharm Clin Res. 2015;8:46-53.

Gohel MC, Amin AF. Formulation design and optimization of modified-release microspheres of diclofenac sodium. Drug Dev Ind Pharm. 1999;25(2):247-51. doi: 10.1081/ddc-100102167, PMID 10065360.

Wang LC, Chen XG, Yu LJ, Li PW. Controlled drug release through carboxymethyl-chitosan/poly(vinyl alcohol) blend films. Polym Eng Sci. 2007;47(9):1373-9. doi: 10.1002/pen.20823.

Schexnailder P, Schmidt G. Nanocomposite polymer hydrogels. Colloid Polym Sci. 2009;287(1):1-11. doi: 10.1007/s00396-008-1949-0.

Swamy BY, Prasad CV, Reddy CLN, Sudhakara P, Chung I, Subha MCS. Preparation of sodium alginate/poly(vinyl alcohol) blend microspheres for controlled release applications. J Appl Polym Sci. 2012;125(1):555-61. doi: 10.1002/app.36243.

Pasquino R, Di Domenico M, Izzo F, Gaudino D, Vanzanella V, Grizzuti N. Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems. Colloids Surf B Biointerfaces. 2016;146:938-44. doi: 10.1016/j.colsurfb.2016.07.039, PMID 27479877.

Gherman S, Lavastin D, Ochiuz L, Biliuta G, Coseri S. Enalapril maleate loaded pollutant film for mucoadhesive buccal drug delivery applications. Cellul Chem Technol. 2016;50:593-600.

Prajapati SK, Tripathi P, Ubaidulla U, An V. Design and development of gliclazide mucoadhesive microspheres: in vitro and in vivo evaluation. AAPS PharmSciTech. 2008;92:24-30.

Elbadawy A, Kamoun XC, Mohamed S, Mohy E, Refaie El, Kenawy S. Crosslinked poly-(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem. 2015;8:1-14.

Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, Gopferich A. Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics. J Control Release. 2010;142(2):221-8. doi: 10.1016/j.jconrel.2009.10.030, PMID 19887092.

Thapa C, Ahad A, Aqil M, Imam SS, Sultana Y. Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of telmisartan using box–behnken design. J Drug Deliv Sci Technol. 2018;44:431-9. doi: 10.1016/ j.jddst.2018.02.003.

Sakore S, Chakraborty B. Formulation and evaluation of enalapril maleate sustained release matrix tablets. Formulation and evaluation of enalapril maleate sustained release matrix tablets. Int J Pharm Biomed Res. 2013;4:21-6.

Nanjwade BK, Patel UD, Kadam VT, Idris NF, Srichana T. Formulation and evaluation of enalapril maleate biodegradable microspheres. J Pharmaceut Sci Pharmacol. 2014;1(3):200-10. doi: 10.1166/jpsp.2014.1029.

Published

07-07-2023

How to Cite

KOMATI, S., BHANOJI RAO, M. E., SWAIN, S., & GHOSE, D. (2023). QUALITY BY DESIGN-DRIVEN FORMULATION DEVELOPMENT AND OPTIMIZATION OF ENALAPRIL MALEATE LOADED MUCOADHESIVE MICROSPHERES: IN VITRO AND IN VIVO CHARACTERIZATION. International Journal of Applied Pharmaceutics, 15(4), 266–276. https://doi.org/10.22159/ijap.2023v15i4.47905

Issue

Section

Original Article(s)