SOLID LIPID NANOPARTILCES: MODERN PROGRESS IN NOSE-TO-BRAIN TRANSDUCTION

Authors

  • C. SOWMYA Department of Pharmaceutics, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India https://orcid.org/0000-0002-9514-4597
  • SURIYA PRAKAASH K. K. Department of Pharmaceutics, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
  • ABRAR AHMED H. Department of Pharmaceutics, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India https://orcid.org/0009-0007-7891-4549

DOI:

https://doi.org/10.22159/ijap.2023v15i4.47897

Keywords:

Solid lipid nanoparticles, Targeted drug delivery, Nose-to-Brain delivery, Intra-nasal route, Methods of SLN preparation

Abstract

Solid Lipid Nanoparticles (SLNs) have gained significant attention in recent years as a promising delivery system for drugs targeting the Central Nervous System (CNS) via the Nose-To-Brain (NTB) route. The unique characteristics of SLNs, such as their small particle size, high stability, and ability to encapsulate lipophilic drugs, make them suitable for crossing the Blood Brain Barrier (BBB) and achieving targeted delivery to the brain. This has led to the development of SLNs-based formulations of drugs for neurological disorders such as Alzheimer's disease and Parkinson's disease, which are being evaluated in preclinical and clinical studies. Overall, the recent advances in SLN technology have improved these nanoparticles' stability, drug loading capacity and BBB crossing ability, making them a promising delivery system for NTB drug delivery. SLNs are composed of a solid lipid core surrounded by a surfactant coating, which allows for the encapsulation of hydrophilic and hydrophobic drugs. Additionally, we will also highlight the current challenges and future perspectives of using SLNs for NTB delivery of CNS therapeutics. Overall, this review aims to provide a comprehensive overview of the current state of the art in using SLNs for NTB delivery and to encourage further research in this field.

Downloads

Download data is not yet available.

References

Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules. 2019;9(12):1-29.

Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. Neurotherapeutics. 2005;2(1):3-14. doi: 10.1602/neurorx.2.1.3.

Battaglia L, Panciani PP, Muntoni E, Capucchio MT, Biasibetti E, De Bonis P. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv. 2018 Apr 3;15(4):369-78. doi: 10.1080/17425247.2018.1429401.

Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7(23):1184-9. doi: 10.1016/S1359-6446(02)02529-1, PMID 12547019.

Mitra AK, Krishnamoorthy R. Prodrugs for nasal drug delivery. Adv Drug Deliv Rev. 1998 Jan;29(1-2):135-46. doi: 10.1016/s0169-409x(97)00065-3, PMID 10837584.

Haque SS, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res. 2014 Jan;48(1):1–12.

Ahmed T, Badr Eldin S, Ahmed O, Aldawsari H. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J Drug Deliv Sci Technol. 2018 Oct 1;48.

Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008 Apr;127(2):97-109. doi: 10.1016/j.jconrel.2007.12.018, PMID 18313785.

Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139-77. doi: 10.1016/j.jconrel.2018.05.011. PMID 29772289.

Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018 Aug;10(3). doi: 10.3390/pharmaceutics10030116, PMID 30081536.

Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012 May;64(7):614-28. doi: 10.1016/j.addr.2011.11.002, PMID 22119441.

Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier-mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128(Feb):337-62. doi: 10.1016/j.ejpb.2018.05.009. PMID 29733950.

Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9-10):545-56. doi: 10.1242/dmm.006031, PMID 20699479.

Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. Int Rev Cell Mol Biol. 2013;303:139-202. doi: 10.1016/B978-0-12-407697-6.00004-0, PMID 23445810.

Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010 Dec;363(23):2233-47. doi: 10.1056/NEJMra0910061, PMID 21121836.

Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose-to-brain delivery. Drug Dev Ind Pharm. 2015;41(12):1922-34. doi: 10.3109/03639045.2015.1052081, PMID 26057769.

Stoeckelhuber M, Olzowy B, Ihler F, Matthias C, Scherer EQ, Babaryka G. Immunolocalization of antimicrobial and cytoskeletal components in the serous glands of human sinonasal mucosa. Histol Histopathol. 2014 Oct;29(10):1315-24. doi: 10.14670/HH-29.1315, PMID 24737387.

Lindsay SL, McCanney GA, Willison AG, Barnett SC. Multi-target approaches to CNS repair: olfactory mucosa-derived cells and heparan sulfates. Nat Rev Neurol. 2020 Apr;16(4):229-40. doi: 10.1038/s41582-020-0311-0, PMID 32099190.

Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010 May;16(14):1644-53. doi: 10.2174/138161210791164108, PMID 20210751.

Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of anti glioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today. 2020 Jan;25(1):185-94. doi: 10.1016/j.drudis.2019.10.005, PMID 31629966.

Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release off J Control Release Soc. 2014 Sep;189:133-40.

Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018 Jul;281:139-77. doi: 10.1016/j.jconrel.2018.05.011, PMID 29772289.

Bannister LH, Dodson HC. Endocytic pathways in the olfactory and vomeronasal epithelia of the mouse: ultrastructure and uptake of tracers. Microsc Res Tech. 1992 Oct;23(2):128-41. doi: 10.1002/jemt.1070230204, PMID 1421552.

Morrison EE, Costanzo RM. Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech. 1992 Oct;23(1):49-61. doi: 10.1002/jemt.1070230105, PMID 1392071.

Selvaraj K, Gowthamarajan K, Karri VVSR. Nose-to-brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):2088-95. doi: 10.1080/21691401.2017.1420073, PMID 29282995.

Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010 Apr;99(4):1654-73. doi: 10.1002/jps.21924, PMID 19877171.

Alavian F, Shams N. Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: considering its advantages and disadvantages. Curr Clin Pharmacol. 2020;15(1):20-9. doi: 10.2174/1574884714666190704115345, PMID 31272358.

Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high-pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int. 2017;2017:5984014. doi: 10.1155/2017/5984014, PMID 28243600.

de Oliveira Junior ER, Truzzi E, Ferraro L, Fogagnolo M, Pavan B, Beggiato S. Nasal administration of nano encapsulated geraniol/ursodeoxycholic acid conjugate: towards a new approach for the management of Parkinson’s disease. J Control Release. 2020 May;321:540-52. doi: 10.1016/j.jconrel.2020.02.033, PMID 32092370.

Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016 May;23(4):1434-43. doi: 10.3109/10717544.2015.1089956, PMID 26405825.

Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood-brain barrier. Pharmaceutics. 2021;13(12). doi: 10.3390/pharmaceutics13122049, PMID 34959331.

Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv. 2013;20(1):47-56. doi: 10.3109/10717544.2012.752421, PMID 23311653.

Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target. 2011 Jul;19(6):468-74. doi: 10.3109/1061186X.2010.523787, PMID 20958095.

Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des Devel Ther. 2017;11:1815-25. doi: 10.2147/DDDT.S102500, PMID 28684900.

Gupta B, RS. Formulation and in vitro characterization of the solid lipid nanoparticles of naftopidil for enhancing oral bioavailability. Asian J Pharm Clin Res. 2023;16(2):77-82. doi: 10.22159/ajpcr.2023.v16i2.46465.

Parameshwar K, SKS. A review of merely polymeric nanoparticles in recent drug delivery system. Asian J Pharm Clin Res. 2022;15(4):4-12. doi: 10.22159/ajpcr.2022.v15i4.43239.

Charumathy AU, Ubaidulla P, Sinha GR. Recent update on liposome-based drug delivery system. Int J Curr Pharm Res. 2022;14(3):22-7. doi: 10.22159/ijcpr.2022v14i3.1991.

Priyanka PM, Rekha, ASD. Review on formulation and evaluation of solid lipid nanoparticles for vaginal application. Int J Pharm Pharm Sci. 2022;14(1):1-8.

Maghsoudi S, Hosseini SA, Ravandi S. A review on phospholipid and liposome carriers: synthetic methods and their applications in drug delivery. J Chem Res. 2022;4(4):346-63. doi: 10.22034/jcr.2022.355104.1182.

Joshi AS, Patel HS, Belgamwar VS, Agrawal A, Tekade AR. Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation. J Mater Sci Mater Med. 2012 Sep;23(9):2163-75. doi: 10.1007/s10856-012-4702-7, PMID 22802103.

Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csoka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: formulation, characterization, and in vitro evaluation. Int J Pharm. 2021;604(May):120724. doi: 10.1016/j.ijpharm.2021.120724, PMID 34023443.

Yasir M, Sara UVS. Solid lipid nanoparticles for the nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B. 2014;4(6):454-63. doi: 10.1016/j.apsb.2014.10.005. PMID 26579417.

Abdel Hady M, Sayed OM, Akl MA. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; optimization and in vivo evaluation. Colloids Surf B Biointerfaces. 2020;193:111076. doi: 10.1016/j.colsurfb.2020.111076, PMID 32408259.

Published

07-07-2023

How to Cite

SOWMYA, C., PRAKAASH K. K., S., & AHMED H., A. (2023). SOLID LIPID NANOPARTILCES: MODERN PROGRESS IN NOSE-TO-BRAIN TRANSDUCTION. International Journal of Applied Pharmaceutics, 15(4), 20–26. https://doi.org/10.22159/ijap.2023v15i4.47897

Issue

Section

Review Article(s)