QBD APPROACH FOR THE DEVELOPMENT OF CAPSAICIN-LOADED STEARIC ACID-GRAFTED CHITOSAN POLYMERIC MICELLES

Authors

  • MAYURI KONDA Department of Pharmaceutics, Gitam School of Pharmacy, GITAM Deemed to be University, Hyderabad, Telangana–502329, India https://orcid.org/0000-0002-3235-4175
  • SUNITHA SAMPATHI Department of Pharmaceutics, Gitam School of Pharmacy, GITAM Deemed to be University, Hyderabad, Telangana–502329, India https://orcid.org/0000-0003-2169-7698

DOI:

https://doi.org/10.22159/ijap.2023v15i4.48101

Keywords:

Capsaicin, Chitosan, Stearic acid, Micelles, Bioavailability

Abstract

Objective: Capsaicin (CAP) is a naturally occurring alkaloid forecasted in the treatment of Alcoholic Hepatitis (AH), but least studied due to its hydrophobicity and low bioavailability. Hence, the present study aimed to optimize the parameters for the synthesis of stearic acid grafted chitosan (CS-g-SA) copolymer and preparation of CAP-loaded CS-g-SA micelles.

Methods: Quality by design (QbD) approach in coordination with “Central composite designs (CCD) and Box–Behnken designs (BBD)” was used to optimize the process parameters.

Results: CS-g-SA was synthesized at 80 °C, 480 min, and 946 rpm, at these optimized conditions, the average particle size and practical yield were found to be 134.70 nm and 85.69%, respectively. Proton Nuclear Magnetic Resonance (1H NMR) spectra depicted a sharp signal at d=1.0 ppm endorsing to -CH2 group of SA and confirming the formation of CS-g-SA copolymer. Critical micellar concentration (CMC) and amino groups substitute degree (SD %) were found to be 30.3±1.51µg/ml and 21.3±0.58%, respectively. The distinguished peaks of CAP (0.9 and 1.31 ppm) in 1H NMR spectra disappeared, indicating drug loading in the micellar core. Micelles had an average particle size of 163.15 nm and an encapsulation efficiency of 68.45%. The CAP-CS-g-SA was found to be biocompatible in accordance with the hemolysis test. The in vitro release pattern showed 86.78 % in 24 h, indicating the slower release of CAP from micelle, whereas 99.48% CAP was released from non-micellar formulations in 6 h.

Conclusion: CAP-CS-g-SA micelle is a promising approach to improve the bioavailability and controlled release of extremely hydrophobic CAP and further in vivo studies would be evident for the treatment of AH using CAP-CS-g-SA.

Downloads

Download data is not yet available.

References

Hughes E, Hopkins LJ, Parker R. Survival from alcoholic hepatitis has not improved over time. PLOS One. 2018 Feb;13(2):e0192393. doi: 10.1371/journal.pone.0192393, PMID 29444123.

Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol. 2020;5:16. doi: 10.21037/tgh.2019.09.08, PMID 32258520.

Singal AK, Louvet A, Shah VH, Kamath PS. Grand rounds: alcoholic hepatitis. J Hepatol. 2018 Jun;69(2):534-43. doi: 10.1016/j.jhep.2018.05.001, PMID 29753761.

Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011 Sep;141(5):1572-85. doi: 10.1053/j.gastro.2011.09.002, PMID 21920463.

Sukmanadi M, Effendi MH. The protective effect of capsaicin (Capsicum annum l) against the induction of aflatoxin b1 in hepatocytes: a study of liver histopathology in mice (mus musculus). Res J Pharm Technol. 2021 Feb;14(2):813-6. doi: 10.5958/0974-360X.2021.00143.8.

Koneru M, Sahu BD, Mir SM, Ravuri HGora, Kuncha M, Mahesh Kumar JM. Capsaicin, the pungent principle of peppers, ameliorates alcohol-induced acute liver injury in mice via modulation of matrix metalloproteinases. Can J Physiol Pharmacol. 2018 Apr;96(4):419-27. doi: 10.1139/cjpp-2017-0473, PMID 29053935.

Singh S, Uddin M, Khan MMA, Singh S, Chishti AS, Bhat UH. Therapeutic properties of capsaicin: a medicinally important bio-active constituent of chilli pepper. Asian J Pharm Clin Res. 2022 Jul;15(7):47-58. doi: 10.22159/ajpcr.2022.v15i7.44405.

Rollyson WD, Stover CA, Brown KC, Perry HE, Stevenson CD, McNees CA. Bioavailability of capsaicin and its implications for drug delivery. J Control Release. 2014;196:96-105. doi: 10.1016/j.jconrel.2014.09.027.

Mateescu MA, Ispas Szabo P, Assaad E. Chitosan and its derivatives as self-assembled systems for drug delivery. Control Drug Deliv. 2015:85-125.

Song P, Lu Z, Jiang Tianze, Han W, Chen X, Zhao X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor-targeted co-delivery of doxorubicin and siPD-L1. Int J Biol Macromol. 2022 Sep;222(A):1078-91. doi: 10.1016/j.ijbiomac.2022.09.245, PMID 36183754.

Jiang X, Ma M, Li M, Shao S, Yuan H, Hu F. Preparation and evaluation of novel emodin-loaded stearic acid-g-chitosan oligosaccharide nanomicelles. Nanoscale Res Lett. 2020 Apr;15(1):93. doi: 10.1186/s11671-020-03304-1, PMID 32335740.

Wang XH, Tian Q, Wang W, Zhang CN, Wang P, Yuan Z. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin. J Mater Sci Mater Med. 2012 Apr;23(7):1663-74. doi: 10.1007/s10856-012-4627-1, PMID 22538726.

Tye H. Application of statistical ’design of experiments’ methods in drug discovery. Drug Discov Today. 2004 Jun 1;9(11):485-91. doi: 10.1016/S1359-6446(04)03086-7, PMID 15149624.

Alafaghani A, Qattawi A. Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J Manuf Processes. 2018;36:164-74. doi: 10.1016/j.jmapro.2018.09.025.

Krishna Pm. Anchakishore babu, Palanatimamatha. Formulation and optimization of ceritinib loaded nanobubbles by box-Behnken design. Int J Appl Pharm. 2022 Jul;14(4):219-26.

Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011 Oct;8(10):1341-60. doi: 10.1517/17425247.2011.605120, PMID 21790511.

Kan S, Lu J, Liu J, Wang J, Zhao Y. A quality by design (QbD) case study on enteric-coated pellets: screening of critical variables and establishment of design space at laboratory scale. Asian J Pharm Sci. 2014 Oct;9(5):268-78. doi: 10.1016/j.ajps.2014.07.005.

N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672, PMID 28166428.

Cheng M, Gao X, Wang Y, Chen H, He B, Xu H. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs. 2013 Sep;11(9):3517-36. doi: 10.3390/md11093517, PMID 24048270.

Lia X, Youb J, FudeCuia Y. Dub, hong Yuanb, Fuqiang Hub. Preparation and characteristics of SA grafted CS oligosaccharide polymeric micelle containing 10-hydroxycamptothecin. Asian J Pharm Sci. 2008 Feb;3(2):80-7.

Chen Q, Sun Y, Wang J, Yan G, Cui Z, Yin H. Preparation and characterization of glycyrrhetinic acid-modified stearic acid-grafted chitosan micelles. Artif Cells Nanomed Biotechnol. 2015;43(4):217-23. doi: 10.3109/21691401.2013.845570, PMID 24093764.

Patra A, Satpathy S, Shenoy AK, Bush JA, Kazi M, Hussain MD. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug-resistant cancers. Int J Nanomedicine. 2018;13:2869-81. doi: 10.2147/IJN.S153094, PMID 29844670.

Xu W, Cui Y, Ling P, Li LB. Preparation and evaluation of folate-modified cationic pluronic micelles for poorly soluble anticancer drug. Drug Deliv. 2012;19(4):208-19. doi: 10.3109/10717544.2012.690005, PMID 22643055.

Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces. 2006 Jul;50(2):97-103. doi: 10.1016/j.colsurfb.2006.04.009, PMID 16759840.

Zhu QL, Zhou Y, Guan M, Zhou XF, Yang SD, Liu Y. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials. 2014 Jul;35(22):5965-76. doi: 10.1016/j.biomaterials.2014.03.088, PMID 24768047.

Salimi A, Sharif Makhmal Zadeh BSM, Kazemi M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci. 2019 Aug;14(4):293-307. doi: 10.4103/1735-5362.263554, PMID 31516506.

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010 May;67(3):217-23. PMID 20524422.

Kemkar K, SL, Sathiyanarayanan A, Mahadik K. 6-shogaol rich ginger oleoresin loaded mixed micelles enhances in vitro cytotoxicity on mcf-7 cells and in vivo anticancer activity against dal cells. Int J Pharm Pharm Sci. 2018 Jan;10(1):160-8. doi: 10.22159/ijpps.2018v10i1.23077.

An JY, Yang HS, Park NR, Koo TS, Shin B, Lee EH. Development of polymeric micelles of oleanolic acid and evaluation of their clinical efficacy. Nanoscale Res Lett. 2020;15(1):133. doi: 10.1186/s11671-020-03348-3, PMID 32572634.

Zhou YY, Du YZ, Wang L, Yuan H, Zhou JP, Hu FQ. Preparation and pharmacodynamics of stearic acid and poly (lactic-co-glycolic acid) grafted chitosan oligosaccharide micelles for 10-hydroxy camptothecin. Int J Pharm. 2010 Jun;393(1-2):143-51. doi: 10.1016/j.ijpharm.2010.04.025, PMID 20420886.

Dou J, Zhang H, Liu X, Zhang M, Zhai G. Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration. Colloids Surf B Biointerfaces. 2014;114:20-7. doi: 10.1016/j.colsurfb.2013.09.010, PMID 24157590.

Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2013 Apr;75(3-4):315-22. doi: 10.1007/s10847-012-0186-9.

Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Anil K. Patri AK, Scott E. McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Letters. 2008 Aug;8(8):2180-7. doi: 10.1021/nl0805615, PMID 18605701.

Song Z, Zhu W, Liu N, Yang F, Feng R. Linolenic acid-modified PEG-PCL micelles for curcumin delivery. International Journal of Pharmaceutics. 2014 Aug;471(1-2):312-21. doi: 10.1016/j.ijpharm.2014.05.059, PMID 24939613.

Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences. 2001 May;13(2):123-133. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

Wei H, Xu L, Sun Y, Li G, Cui Z, Yan G. Preliminary pharmacokinetics of PEGpegylated oxaliplatin polylactic acid nanoparticles in rabbits and tumor-bearing mice. Artif Cells Nanomed Biotechnol. 2015 Feb;43(4):258-62. doi: 10.3109/21691401.2014.883402, PMID 24564351.

Termsarasab U, Cho HJ, Kim DH, Chong S, Chung SJ, Shim CK, Moon HT, Kim DD. Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. International Journal of Pharmaceutics. 2013 Jan;441(1-2):373-80. doi: 10.1016/j.ijpharm.2012.11.018, PMID 23174411.

Kovacs A, Berko S, Csanyi E, Csoka I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the quality by design method. Eur J Pharm Sci. 2017;99:246-57. doi: 10.1016/j.ejps.2016.12.020, PMID 28012940.

Beg S, Saini S, Bandopadhyay S, Katare OP, Singh B. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm. 2018 Mar;44(3):407-20. doi: 10.1080/03639045.2017.1395459, PMID 29048242.

Patel M, Sawant K. A quality by design concept on lipid-based nanoformulation containing antipsychotic drug: screening design and optimization using response surface methodology. J Nanomed Nanotechnol. 2017 May;08(3):1-11. doi: 10.4172/2157-7439.1000442.

Hu FQ, Jiang XH, Huang X, Wu XL, Yuan H, Wei XH, Yong Zhong Du. Enhanced cellular uptake of chlorine e6 mediated by stearic acid–grafted chitosan oligosaccharide micelles. Journal of Drug Targeting. 2009 Jun;17(5):384-91. doi: 10.1080/10611860902894325, PMID 19343607.

Du YZ, Cai LL, Li J, Zhao MD, Chen FY, Yuan H, Fu-Qiang Hu. Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. International Journal of Nanomedicine. 2011;6:1559:1559-68. doi: 10.2147/IJN.S23828, PMID 21845046.

Nazzal S, Khan MA. Response surface methodology for the optimization of ubiquinone self-nano emulsified drug delivery system. AAPS PharmSciTech. 2002 Jan; 3(1):E3. doi: 10.1208/pt030103, PMID 12916956.

Wei TK, Manickam S. Response surface methodology, an effective strategy in the optimization of the generation of curcumin‐loaded micelles. Asia-Pac J Chem Eng. 2012 Jan;7(Suppl 1):125-33. doi: 10.1002/apj.661.

Shaikh MV, Kala M, Nivsarkar M. Formulation and optimization of doxorubicin-loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in vitro activity. European Journal of Pharmaceutical Sciences. 2017;100:262-72. doi: 10.1016/j.ejps.2017.01.026, PMID 28126560.

Abbas G, Hanif M, Khan MA. pH-responsive alginate polymeric rafts for controlled drug release by using box behnken response surface design. Designed Monomers and Polymers. 2017 Sep;20(1):1-9. doi: 10.1080/15685551.2016.1231046, PMID 29491774.

Chen Q, Sun Y, Wang J, Yan G, Cui Z, Yin H, Haitian Wei. Preparation and characterization of glycyrrhetinic acid-modified stearic acid-grafted chitosan micelles. Artificial Cells Nanomedicine and Biotechnology. 2015 Oct;43(4):217-23. doi: 10.3109/21691401.2013.845570, PMID 24093764.

Xie YT, Du YZ, Yuan H, Hu FQ. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system. International Journal of Nanomedicine. 2012 Jun;7:3235-44. doi: 10.2147/IJN.S32701, PMID 22802685.

Mohanty AK, Mohanta GP. Dual anticancer drug-loaded methoxy poly (ethylene glycol)-poly (ε-caprolactone) block copolymeric micelles as novel drug carriers. International Journal of Pharmacy and Pharmaceutical Sciences. 2014 Sep;6(9):328-32.

Published

07-07-2023

How to Cite

KONDA, M., & SAMPATHI, S. (2023). QBD APPROACH FOR THE DEVELOPMENT OF CAPSAICIN-LOADED STEARIC ACID-GRAFTED CHITOSAN POLYMERIC MICELLES. International Journal of Applied Pharmaceutics, 15(4), 131–142. https://doi.org/10.22159/ijap.2023v15i4.48101

Issue

Section

Original Article(s)