THE PROMISES OF THE POTENTIAL USES OF POLYMER BIOMATERIALS IN BIOMEDICAL APPLICATIONS AND THEIR CHALLENGES

Authors

  • MOHAMMED ZORAH Department of C. T. E, Imam Al-Kadhum College, Baghdad, Iraq https://orcid.org/0000-0003-4255-4338
  • MUSTAFA MUDHAFAR Department of Medical Physics, Faculty of Medical Sciences, University of Kerbala, 56001, Karbala, Iraq. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ahl Al Bayt, 56001, Karbala, Iraq https://orcid.org/0000-0002-3785-7396
  • HAYDER A. NASER Department of C. T. E, Imam Al-Kadhum College, Baghdad, Iraq
  • IZAN ROSHAWATY MUSTAPA Department of Physics, Faculty of Science and Mathematics. Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.22159/ijap.2023v15i4.48119

Keywords:

Biomaterials, Synthetics polymers, Biomedical applications, Challenges

Abstract

Biopolymers are a prominent class of functional materials ideal for high-value applications, and they fascinate researchers and experts from various fields. Polymers are flexible building blocks in many chemical combinations and blend to create composite materials with complementary qualities. The biomedical use of polymeric biomaterials was analyzed scientifically and technologically in this study, along with a compilation of their uses, manufacture, mechanical qualities, and key characteristics for the biomedical sector. The volume of scholarly publications and patents demonstrates the current knowledge of polymeric biomaterials. These biomaterials may now supplement, strengthen, or perform a particular role in the human body. Immune reactions persist due to the complexity of biological systems, impeding the growth of tissues and functioning organs in a laboratory setting.

Downloads

Download data is not yet available.

References

Tamang N, Shrestha P, Khadka B, Mondal MH, Saha B, Bhattarai A. A review of biopolymers’ utility as emulsion stabilizers. Polymers (Basel). 2021;14(1):1-20. doi: 10.3390/polym14010127, PMID 35012149.

Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A critical review on polymeric biomaterials for biomedical applications. Polymers (Basel). 2021;13(17):1-27. doi: 10.3390/polym13173015, PMID 34503054.

Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1(3):161-76, doi: 10.1016/j.bsbt.2015.08.002.

Jaganathan SK, Supriyanto E, Murugesan S, Balaji A, Asokan MK. Biomaterials in cardiovascular research: applications and clinical implications. BioMed Res Int. 2014;2014:459465. doi: 10.1155/2014/459465, PMID 24895577.

Strohbach A, Busch R. Polymers for cardiovascular stent coatings. Int J Polym Sci. 2015;2015:1-11. doi: 10.1155/2015/782653.

Jana S, Tefft BJ, Spoon DB, Simari RD. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014;10(7):2877-93. doi: 10.1016/j.actbio.2014.03.014, PMID 24675108.

Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi AN, Dehghani F. Biomedical applications of biodegradable polyesters. Polymers (Basel). 2016;8(1). doi: 10.3390/polym8010020, PMID 30979116.

Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37(2):237-80, doi: 10.1016/j.progpolymsci.2011.06.004.

Ray S, Kalia VC. Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol. 2017;57(3):261-9. doi: 10.1007/s12088-017-0651-7, PMID 28904409.

Zorah M, Mustapa IR, Daud N, Jumah N, Sudin NAS, Majhool A. Thermomechanical study and thermal behavior of plasticized poly (lactic acid) nanocomposites. Solid State Phenom. 2021;317:333-40. doi: 10.4028/www.scientific.net/SSP.317.333.

Rebelo R, Fernandes M, Fangueiro R. Biopolymers in medical implants: a brief review. Procedia Eng. 2017;200:236-43. doi: 10.1016/j.proeng.2017.07.034.

Shrivastav A, Kim HY, Kim YR. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int. 2013;2013:581684. doi: 10.1155/2013/581684, PMID 23984383.

Janjic M, Pappa F, Karagkiozaki V, Gitas C, Ktenidis K, Logothetidis S. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int J Nanomedicine. 2017;12:6343-55. doi: 10.2147/IJN.S138261, PMID 28919738.

Thomas AW, Dove AP. Postpolymerization modifications of alkene-functional polycarbonates for the development of advanced materials biomaterials. Macromol Biosci. 2016;16(12):1762-75. doi: 10.1002/mabi.201600310, PMID 27654885.

Liu C, Luan P, Li Q, Cheng Z, Sun X, Cao D. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter. 2020;3(6):2066-79. doi: 10.1016/j.matt.2020.10.004.

Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832-64. doi: 10.1002/polb.22259, PMID 21769165.

Chandran S, Ponnusamy T, Bheeman D, Rajamani RK, Bellan CS. Dextran sulfate stabilized silver nanoparticle: next generation efficient therapy for cancer. Int J App Pharm. 2020;12(1):59-63. doi: 10.22159/ijap.2020v12i1.35327.

Luz CM, Boyles MSP, Falagan Lotsch P, Pereira MR, Tutumi HR, Oliveira Santos E. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J Nanobiotechnology. 2017;15(1):1-18.

Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35(3):338-56, doi: 10.1016/j.progpolymsci.2009.12.003.

Zainurin Ma ZI, Jaafar Cn MM. The effect of yttria-stabilized zirconia (Ysz) addition on the synthesis of βeta-tricalcium phosphate (Β-Tcp) from biogenic hydroxyapatite. Malays J Microsc. 2023;19(1):66-75.

Lee JC, Choi MC, Choi DH, Ha CS. Toughness enhancement of poly(lactic acid) through hybridisation with epoxide-functionalised silane via reactive extrusion. Polym Degrad Stab. 2019;160:195-202. doi: 10.1016/j.polymdegradstab.2018.12.024.

Acid P, Li G, Zhao M, Xu F, Yang B, Li X. Synthesis and biological application; 2020.

Courgneau C, Domenek S, Guinault A, Averous L, Ducruet V. Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly (lactic acid). J Polym Environ. 2011;19(2):362-71. doi: 10.1007/s10924-011-0285-5.

Xiao L, Wang B, Yang G, Gauthier M. Poly(lactic acid)-based biomaterials: synthesis, modification and applications; 2012.

Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612-26. doi: 10.1111/jam.14290, PMID 31021482.

Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J. Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: research developments, and prospective applications. Molecules. 2023;28(2). doi: 10.3390/molecules28020485, PMID 36677545.

Mondal S, Nguyen TP, Pham VH, Hoang G, Manivasagan P, Kim MH. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46(3):3443-55. doi: 10.1016/j.ceramint.2019.10.057.

Daranarong D, Techaikool P, Intatue W, Daengngern R, Thomson KA, Molloy R. Effect of surface modification of poly(L-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility. Surf Coat Technol. 2016;306:328-35, doi: 10.1016/j.surfcoat.2016.07.058. surfcoat.2016.07.058.

Handa U, Saroha K. Research and development of diazepam solid dispersion powder using natural polymers. Int J App Pharm. 2018;10(5):220-5. doi: 10.22159/ijap.2018v10i5.27975.

Abdulkareem A, Kasak P, Nassr MG, Mahmoud AA, Al-Ruweidi MKAA, Mohamoud KJ. Surface modification of poly(lactic acid) film via cold plasma assisted grafting of fumaric and ascorbic acid. Polymers (Basel). 2021;13(21). doi: 10.3390/polym13213717, PMID 34771274.

Utsunomia C, Ren Q, Zinn M. Poly(4-hydroxybutyrate): current state and perspectives. Front Bioeng Biotechnol. 2020;8(April):257. doi: 10.3389/fbioe.2020.00257, PMID 32318554.

Le Meur S, Zinn M, Egli T, Thony Meyer L, Ren Q. Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Fact. 2013;12:123. doi: 10.1186/1475-2859-12-123. PMID 24325175.

Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. Engineered Regeneration. 2022;3(1):24-40. doi: 10.1016/j.engreg.2022.01.003.

Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech (Berl). 2013;58(5):439-52. doi: 10.1515/bmt-2013-0009, PMID 23979121.

Odermatt EK, Funk L, Bargon R, Martin DP, Rizk S, Williams SF. MonoMax suture: a new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate. Int J Polym Sci. 2012;2012:1-12. doi: 10.1155/2012/216137.

Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA. Inorganic/organic combination: inorganic particles/polymer composites for tissue engineering applications. Bioact Mater. 2023;24:535-50. doi: 10.1016/j.bioactmat.2023.01.003. PMID 36714332.

Yuan S, Shen Y, Li Z. Injectable cell and growth factor-free poly (4-hydroxybutyrate) (P4HB) microspheres with open porous structures and great efficiency of promoting bone regeneration. ACS Appl Bio Mater. 2021;4(5):4432-40. doi: 10.1021/acsabm.1c00188, PMID 35006855.

Di Bartolo A, Infurna G, Dintcheva NT. A review of bioplastics and their adoption in the circular economy. Polymers (Basel). 2021;13(8). doi: 10.3390/polym13081229, PMID 33920269.

Zorah M, Mustapa IR, Daud N, Nahida JH, Sudin NAS. Effects of tributyl citrate plasticizer on thermomechanical attributes of poly lactic acid. J Adv Res Fluid Mech Therm Sci. 2019;62(2):274-84.

Parveen I, Mahmud I. Biodegradable natural polymers for biomedical applications 2. Important properties of biodegradable materials/polymer 3. Classification of natural biodegradable polymers 4. Natural Polymers for Biomedical Application. 2019;5:67-80.

Varma K, Gopi S. Biopolymers and their role in medicinal and pharmaceutical applications [internet]. Biopolymers and their Industrial Applications. Elsevier Inc; 2021. p. 175-91. Available from: 2021. doi: 10.1016/B978-0-12-819240-5.00007-9. [Last accessed on 2023 Jun 2023]

Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater Degrad. 2022;6(1). doi: 10.1038/s41529-022-00277-7.

Lin CC, Anseth KS. The biodegradation of biodegradable polymeric biomaterials. Biomaterials science: an introduction to materials. 3rd ed. Elsevier. p. 716-28. doi: 10.1016/B978-0-08-087780-8.00061-9.

Kalidas S, Geetha P. Development and optimization of astragalin-loaded polymeric nanoparticles using central composite factorial design. Int J App Pharm. 2022;14(5):69-77. doi: 10.22159/ijap.2022v14i5.44315.

Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers (Basel). 2021;13(12). doi: 10.3390/polym13121962, PMID 34199209.

Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC. Cranioplasty: review of materials. J Craniofac Surg. 2016;27(8):2061-72. doi: 10.1097/SCS.0000000000003025, PMID 28005754.

Blanco I. Polysiloxanes in theranostics and drug delivery: a review. Polymers (Basel). 2018;10(7):1-11. doi: 10.3390/polym10070755, PMID 30960680.

Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural polymers: polysaccharides and their derivatives for biomedical applications. Natural and synthetic biomedical polymers. Elsevier Inc; 2014. p. 67-89. doi: 10.1016/B978-0-12-396983-5.00004-1.

Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y. Biomedical polymers: synthesis, properties, and applications. Sci China Chem. 2022;65(6):1010-75. doi: 10.1007/s11426-022-1243-5, PMID 35505924.

Feghali E, Tauk L, Ortiz P, Vanbroekhoven K, Eevers W. Catalytic chemical recycling of biodegradable polyesters. Polym Degrad Stab. 2020;179:109241. doi: 10.1016/j.polymdegradstab.2020.109241.

Feng J, Zhuo RX, Zhang XZ. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012;37(2):211-36, doi: 10.1016/j.progpolymsci.2011.07.008.

Hearn G, Stevenson T. PCL in the 21st cent. NG, Community T. Futures; 2010. p. 1-3.

Deep A, Bhatt D, Shrivastav V, Bhardwaj SK, Malik P. Synthesis, characterization and applications of polyolefin based eco-friendly polymer composites. Sustain Polym Compos Nanocomposites. 2019:65-103.

Hashmi MP, Koester TM, Droege HR, Best PD, Loughrin MR. A review of bio-processing of blood vessels using natural and synthetic materials. Encyclopedia of smart materials. Elsevier Ltd.; 2021. p. 176-84. doi: 10.1016/B978-0-12-803581-8.10257-7.

Abdeen ZI. Polyurethane rubber-based nanoblends: preparation, characterization and applications; 2016. p. 89-103.

Ho BT, Roberts TK, Lucas S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit Rev Biotechnol. 2018;38(2):308-20. doi: 10.1080/07388551.2017.1355293, PMID 28764575.

Lock EH, Petrovykh DY, Mack P, Carney T, White RG, Walton SG. Surface composition, chemistry, and structure of polystyrene modified by electron-beam-generated plasma. Langmuir. 2010;26(11):8857-68. doi: 10.1021/la9046337, PMID 20369866.

Cai L, Liu S, Guo J, Jia YG. Polypeptide-based self-healing hydrogels: design and biomedical applications. Acta Biomater. 2020;113:84-100. doi: 10.1016/j.actbio.2020.07.001. PMID 32634482.

Maddah HA. Polypropylene as a promising plastic: a review. Am J Polym Sci. 2016;6(1):1-11. doi: 10.5923.j.ajps.20160601.01.html.

Kakiage M, Tahara N, Tominaga Y, Yanagidani S, Yanase I, Kobayashi H. Effect of molecular structure of polyols with different molecular characteristics on synthesis of boron carbide powder. Key Eng Mater. 2013;534:61-5. doi: 10.4028/www.scientific.net/KEM.534.61.

Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37(1):109-31. doi: 10.1016/j.biotechadv.2018.11.008. PMID 30472307.

Wang J, Gao C, Zhang Y, Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C. 2010;30(1):214-8. doi: 10.1016/j.msec.2009.10.006.

Muthuraj R, Misra M, Mohanty AK. Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. 14th ed. Biocomposites: Design and Mechanical Performance. Elsevier Ltd; 2015. p. 93-140. doi: 10.1016/B978-1-78242-373-7.00014-7.

Telegdi J, Trif L. Biodegradable polyesters for medical applications. Polyest Synth Types Appl. 2018;132:57-90.

Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36(9):1254-76. doi: 10.1016/j.progpolymsci.2011.05.003.

Mudhafar M, Zainol I, Alsailawi HA, Zorah M, Karhib MM, Mahmood Mahdi N. Preparation and characterization of FsHA/FsCol beads: cell attachment and cytotoxicity studies. Heliyon. 2023;9(5):e15838. doi: 10.1016/j.heliyon.2023.e15838, PMID 37206015.

Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials (Basel). 2010;3(2):999-1014. doi: 10.3390/ma3020999.

Ding S, Zhang N, Lyu Z, Zhu W, Chang YC, Hu X. Protein-based nanomaterials and nanosystems for biomedical applications: a review. Mater Today. 2021;43:166-84. doi: 10.1016/j.mattod.2020.11.015.

Huang CY, Kuo JM, Wu SJ, Tsai HT. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chem. 2016;190:997-1006. doi: 10.1016/j.foodchem.2015.06.066, PMID 26213067.

Feroz S, Muhammad N, Ranayake J, Dias G. Keratin-based materials for biomedical applications. Bioact Mater. 2020;5(3):496-509. doi: 10.1016/j.bioactmat.2020.04.007. PMID 32322760.

Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32(25):5773-81. doi: 10.1016/j.biomaterials.2011.04.061. PMID 21601277.

Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials. 2012;33(10):2848-57. doi. doi: 10.1016/j.biomaterials.2011.12.028. PMID 22261099.

Scheibel T. Leal-ega A. Silk-Based Mater Biomed Appl. 2018;(Mar 2010).

Agarwal S. 5.15-biodegradable polyesters. Vol. 1–10. Polymer science: a comprehensive reference: 1-10. Elsevier; 2012. p. 333-61. doi: 10.1016/B978-0-444-53349-4.00145-X.

Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J. Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci. 2011.

Teodorescu M, Bercea M, Morariu S. Biomaterials of poly(vinyl alcohol) and natural polymers. Polym Rev. 2018;58(2):247-87. doi: 10.1080/15583724.2017.1403928.

Siro I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010;17(3):459-94. doi: 10.1007/s10570-010-9405-y.

Aziz T, Farid A, Haq F, Kiran M, Ullah A, Zhang K, Li C, Ghazanfar S, Sun H, Ullah R, Ali A, Muzammal M, Shah M, Akhtar N, Selim S, Hagagy N, Samy M, Al Jaouni SK. A review on the modification of cellulose and its applications. Polymers (Basel). 2022;14(15). doi: 10.3390/polym14153206, PMID 35956720.

Mudhafar M, Zainol I, Alsailawi HA, Aiza Jaafar CN. Synthesis and characterization of fish scales of hydroxyapatite/ collagen–silver nanoparticles composites for the applications of bone filler. J Korean Ceram Soc. 2022;59(2):229-39. doi: 10.1007/s43207-021-00154-0.

Castro C, Cleenwerck I, Trcek J, Zuluaga R, de Vos P, Caro G, Aguirre R, Putaux JL, Ganan P. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol. 2013;63(PART3):1119-25. doi: 10.1099/ijs.0.043414-0, PMID 22729025.

Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J. 2014 Jul;59:302-25. doi: 10.1016/j.eurpolymj.2014.07.025.

Satitsri S, Muanprasat C. Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules. 2020;25(24). doi: 10.3390/molecules25245961, PMID 33339290.

Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133-74. doi: 10.3390/md13031133, PMID 25738328.

Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-a review. Bioact Mater. 2020;5(1):164-83. doi: 10.1016/j.bioactmat.2020.01.012, PMID 32083230.

Mudhafar M, Zainol I, Alsailawi HA, Karhib MM, Zorah M, Alnagdi FH. Bioactive chemical constituents of three crude extracts of Polyalthia sclerophylla using GC-mass and phytochemical screening and their antibacterial and cytotoxicity activities. Eurasian Chem Commun. 2023;5(8):675-90.

Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym. 2020;236:116025. doi: 10.1016/j.carbpol.2020.116025. PMID 32172843.

Choe G, Oh S, Seok JM, Park SA, Lee JY. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019;11(48):23275-85. doi: 10.1039/c9nr07643c, PMID 31782460.

Gong X, Dang G, Guo J, Liu Y, Gong Y. A sodium alginate/feather keratin composite fiber with skin-core structure as the carrier for sustained drug release. Int J Biol Macromol. 2020;155:386-92. doi: 10.1016/j.ijbiomac.2020.03.224, PMID 32234435.

Anderson JM. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen Biomater. 2016;3(2):73-7. doi: 10.1093/rb/rbw001, PMID 27047672.

Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671-701. doi: 10.3390/ma8095269, PMID 28793529.

Martin KE, Garcia AJ. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133:4-16. doi: 10.1016/j.actbio.2021.03.038, PMID 33775905.

Zainol I, Zainurin MAN, Bakar NHA, Jaafar CNA, Mudhafar M. Characterisation of porous hydroxyapatite beads prepared from fish scale for potential bone filler applications. Malaysian Journal of Microscopy. 2022;18(2):48-57.

Requena L, Requena C, Christensen L, Zimmermann US, Kutzner H, Cerroni L. Adverse reactions to injectable soft tissue fillers. J Am Acad Dermatol. 2011;64(1):1-34. doi: 10.1016/j.jaad.2010.02.064, PMID 21167403.

Basak S. Thermoplastic elastomers in biomedical industry–evolution and current trends. J Macromol Sci Part A Pure Appl Chem. 2021;58(9):579-93. doi: 10.1080/10601325.2021.1922086.

Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33(6):1771-81. doi: 10.1016/j.biomaterials.2011.10.054, PMID 22137126.

Mudhafar M, Alsailawi HA, Jaafar CNA. Synthesis, characterisation, cytotoxicity and antibacterial studies of green synthesised silver nanoparticles using leaves of Polyalthia sclerophylla. Malaysian Journal of Microscopy. 2022;18(2):79-91.

Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1–29e1705328. doi: 10.1002/adma.201705328, PMID 29736981.

Alja’afreh IY, Alaatabi RM, Hussain Aldoghachi FE, Mudhafar M, Abdulkareem Almashhadani HA, Kadhim MM. Study the antioxidant of Matricaria chamomilla (chamomile) powder: in vitro and vivo. Revis Bionatura. 2023;8(1):1-5. doi: 10.21931/RB/2023.08.01.63.

Sudin NAS, Daud N, Mustapa IR, Zorah MDA, Mustapa IR, Zorah M. Thermomechanical properties and thermal behavior of poly (Lactic acid) composites reinforced with TiO2 Nanofiller. Thermomechanical Properties and Thermal Behavior of Poly (Lactic Acid) Composites Reinforced with TiO2 Nanofiller. In. Solid State Phenomena. 2021;317:341-50. doi: 10.4028/www.scientific.net/SSP.317.341

Published

07-07-2023

How to Cite

ZORAH, M., MUDHAFAR, M., NASER, H. . A., & MUSTAPA, I. R. (2023). THE PROMISES OF THE POTENTIAL USES OF POLYMER BIOMATERIALS IN BIOMEDICAL APPLICATIONS AND THEIR CHALLENGES. International Journal of Applied Pharmaceutics, 15(4), 27–36. https://doi.org/10.22159/ijap.2023v15i4.48119

Issue

Section

Review Article(s)

Most read articles by the same author(s)