ESTIMATION OF IN VITRO AND IN VIVO PERFORMANCE OF METRONIDAZOLE ORAL DOSAGE FORMS

Authors

  • JOSE RAUL MEDINA-LOPEZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0002-4159-8403
  • YONATAN JOCEL GOMEZ-VARGAS Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0009-0006-6565-4437
  • HEDWYN RODOLFO MENDEZ-HERNANDEZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
  • FELIPE DINO REYES-RAMIREZ Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0009-0009-6876-9223
  • JUAN CARLOS RUIZ-SEGURA Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0003-2304-7971
  • MARCELA HURTADO Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0003-3546-5986

DOI:

https://doi.org/10.22159/ijap.2023v15i4.48137

Keywords:

Convolution, Inverse release function, Metronidazole, Prediction error, Tablets

Abstract

Objective: To estimate plasma concentrations-time profiles of metronidazole commercial tablets through in vitro dissolution data using the Inverse Release Function approach and a convolution method.

Methods: Dissolution profiles of metronidazole reference tablets (500 mg) were obtained using USP Apparatus 1 at 100 rpm, USP Apparatus 4 at 16 ml/min, and 0.1 N HCl, pH 4.5 acetate buffer and pH 6.8 phosphate buffer as dissolution media. Additionally, three generic drug products were tested using USP Apparatus 1 and pH 4.5 acetate buffer. Drug was quantified at 278 nm until 60 min. Dissolution parameters such as mean dissolution time, area under the cumulative dissolution curve, and dissolution efficiency were calculated. Metronidazole plasma levels were predicted considering the in vitro release data and published information. Percent of prediction error (PE) for Cmax and AUC0-inf at each condition was calculated.

Results: When comparing dissolution profiles with common dissolution parameters (USP 1 vs. 4) significant differences were found (*P<0.05). Values of PE for Cmax and AUC0-inf were within range (±15%) only with USP Apparatus 1 and pH 4.5 acetate buffer. Using these conditions when comparing generic drug products vs. reference formulation, significant differences were found (*P<0.05) and values of PE for AUC0-inf were out of the range.

Conclusion: The obtained information suggests using USP Apparatus 1 and pH 4.5 acetate buffer to predict the in vivo performance of metronidazole tablets. The impact of in vitro differences of all generic formulations was confirmed with differences in predicted in vivo performance.

Downloads

Download data is not yet available.

References

Lu Y, Kim S, Park K. In vitro-in vivo correlation: perspectives on model development. Int J Pharm. 2011;418(1):142-8. doi: 10.1016/j.ijpharm.2011.01.010, PMID 21237256.

Rastogi V, Yadav P, Lal N, Rastogi P, Singh BK, Verma N. Mathematical prediction of pharmacokinetic parameters-an in vitro approach for investigating pharmaceutical products for IVIVC. Future Journal of Pharmaceutical Sciences. 2018;4(2):175-84. doi: 10.1016/j.fjps.2018.03.001.

Alt A, Potthast H, Moessinger J, Sickmüller B, Oeser H. Biopharmaceutical characterization of sotalol-containing oral immediate release drug products. Eur J Pharm Biopharm. 2004;58(1):145-50. doi: 10.1016/j.ejpb.2004.02.007. PMID 15207548.

Rediguieri CF, Porta V, G Nunes DSG, Nunes TM, Junginger HE, Kopp S. Biowaiver monographs for immediate release solid oral dosage forms: metronidazole. J Pharm Sci. 2011;100(5):1618-27. doi: 10.1002/jps.22409, PMID 21374600.

Center for Drug Evaluation and Research (CDER). Food and drug administration guidance for industry: waiver on in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system; 2017. Available from: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101720038-pdf. [Last accessed on 12 May 2023]

United States Pharmacopeia. USP 44. NF. The United States of America Pharmacopeial Convention. Vol. II; 2021. p. 39.

Singh I, Aboul Enein HY. Advantages of USP apparatus IV (flow-through cell apparatus) in dissolution studies. J Iran Chem Soc. 2006;3(3):220-2. doi: 10.1007/BF03247211.

D’Arcy DM, Liu B, Bradley G, Healy AM, Corrigan OI. Hydrodynamic and species transfer simulations in the USP 4 dissolution apparatus: considerations for dissolution in a low velocity pulsing flow. Pharm Res. 2010;27(2):246-58. doi: 10.1007/s11095-009-0010-4, PMID 20012167.

Medina JR, Ortiz HD, Hurtado M, Domínguez Ramirez AM. Influence of dose and the USP basket and flow-through cell dissolution apparatuses in the release kinetics of metronidazole immediate-release products. Int J Res Pharm Sci. 2014;5(2):137-46.

Jimenez Flores Y, Hurtado M, Medina Lopez JR. Pharmaceutical equivalence of metronidazole tablets using the flow-through cell (USP Apparatus 4) and media of physiological pH range. Int J App Pharm. 2022;14(4):259-64. doi: 10.22159/ijap.2022v14i4.44759.

Medina JR, Hernandez J, Hurtado M. In vitro release studies of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids. Int J App Pharm. 2017;9(4):54-60. doi: 10.22159/ijap.2017v9i4.18929.

Cardot JM, Lukas JC, Muniz P. Time scaling for in vitro-in vivo correlation: the inverse release function (IRF) approach. AAPS J. 2018;20(6):95. doi: 10.1208/s12248-018-0250-5, PMID 30159772.

Qureshi SA. In vitro-in vivo correlation (IVIVC) and determining drug concentrations in blood from dissolution testing a simple and practical approach~!2009-10-30~!2010-01-04~!2010-04-29~!. Open Drug Deliv J. 2010;4(2):38-47. doi: 10.2174/1874126601004020038.

Comision Federal Para la Proteccion de Riesgos Sanitarios (COFEPRIS). Listado actualizado de medicamentos de referencia 2023/01. Mexico. Available from: https://www.gob.mx/cms/uploads/attachment/file/803597/lMR_2023-01_actualizaci_n_10_febrero_2023.pdf. [Last accessed on 12 May 2023]

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C. DD Solver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64-74.

Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and-independent methods. Int J Pharm. 2000;209(1-2):57-67. doi: 10.1016/s0378-5173(00)00554-8, PMID 11084246.

Zhang Y, Huo M, Zhou J, Xie S. PK Solver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Programs Biomed. 2010;99(3):306-14. doi: 10.1016/j.cmpb.2010.01.007. PMID 20176408.

Herrera GL. Determinación de la bioequivalencia de dos formulaciones orales de metronidazol en voluntarios sanos; 2006. Available from: https://tesis.ipn.mx/bitstream/handle/123456789/3393/determinacionbioequiv.pdf?sequence=1&isAllowed=y. [Last accessed on 12 May 2023]

Center for Drug Evaluation and Research (CDER). Food and Drug Administration Guidance for Industry: extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations; 1997. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-in vivo-correlations. [Last accessed on 12 May 2023].

Bendas ER. Two different approaches for the prediction of in vivo plasmaconcentration–time profile from in vitro release data of once-daily formulations of diltiazem hydrochloride. Arch Pharm Res. 2009;32(9):1317-29. doi: 10.1007/s12272-009-1918-2, PMID 19784589.

El-Masry SM, Helmy SA. Hydrogel-based matrices for controlled drug delivery of etamsylate: prediction of in vivo plasma profiles. Saudi Pharm J. 2020;28(12):1704-18. doi: 10.1016/j.jsps.2020.10.016, PMID 33424262.

Freeman CD, Klutman NE, Lamp KC. Metronidazole a therapeutic review and update. Drugs. 1997;54(5):679-708. doi: 10.2165/00003495-199754050-00003, PMID 9360057.

McGilveray IJ, Mousseau N, Brien R. Bioavailability of 23-canadian formulations of phenylbutazone. Can J Pharm Sci. 1978;13:33-9.

Boix Montanes A, Barrera Puigdollers MT. Sustitucion y seleccion de equivalentes terapeuticos. Farm Hosp. 1996;20(6):351-8.

McGilveray IJ, Midha KK, Loo JC, Cooper JK. The bioavailability of commercial metronidazole formulations. Int J Clin Pharmacol Biopharm. 1978;16(3):110-5. PMID 649227.

Itiola OA, Pilpel N. Studies on metronidazole tablet formulations. J Pharm Pharmacol. 1986;38(2):81-6. doi: 10.1111/j.2042-7158.1986.tb04516.x. PMID 2870167.

Idkaidek NM, Najib NM. Enhancement of oral absorption of metronidazole suspension in humans. Eur J Pharm Biopharm. 2000;50(2):213-6. doi: 10.1016/s0939-6411(00)00098-9, PMID 10962229.

Dey S, Samantha A, Roy K, Ghosh S, Ghosh A, De PK. Formulation and in vitro evaluation of oil entrapped buoyant beads for stomach-specific delivery of metronidazole. Int J Pharm Pharm Sci. 2014;6(9):407-10.

Chakravorty A, Chakravorty M, Sa B. Factors influencing delayed release followed by rapid pulse release of drugs from compression coated tablets for colon targeting. Int J Pharm Pharm Sci. 2016;8(8):330-6.

Published

07-07-2023

How to Cite

MEDINA-LOPEZ, J. R., GOMEZ-VARGAS, Y. J., MENDEZ-HERNANDEZ, H. R., REYES-RAMIREZ, F. D., RUIZ-SEGURA, J. C., & HURTADO, M. (2023). ESTIMATION OF IN VITRO AND IN VIVO PERFORMANCE OF METRONIDAZOLE ORAL DOSAGE FORMS. International Journal of Applied Pharmaceutics, 15(4), 291–295. https://doi.org/10.22159/ijap.2023v15i4.48137

Issue

Section

Original Article(s)

Most read articles by the same author(s)

<< < 1 2