APTAMERS: NANOMATERIALS AS A POTENTIAL AGENT FOR ANTIVIRAL THERAPEUTIC DRUG DELIVERY DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW

Authors

  • MUTHADI RADHIKA REDDY Department of Pharmaceutics, Guru Nanak Institutions Technical Campus-School of Pharmacy, Hyderabad, India. 1Department of Pharmaceutics, Gitam School of Pharmacy, GITAM Deemed to be University, Hyderabad, India https://orcid.org/0000-0001-8205-4915
  • SHIVA KUMAR GUBBIYAPPA Department of Pharmaceutics, Guru Nanak Institutions Technical Campus-School of Pharmacy, Hyderabad, India
  • SHAIK HARUN RASHEED Department of Pharmaceutics, Gitam School of Pharmacy, GITAM Deemed to be University, Hyderabad, India
  • KONDAPURAM PARAMESHWAR Department of Pharmaceutics, Guru Nanak Institutions Technical Campus-School of Pharmacy, Ibrahimpatnam, Hyderabad, India

DOI:

https://doi.org/10.22159/ijap.2024v16i1.48266

Keywords:

Cancer, SELEX, Targeted drug delivery, Nanoparticle, Therapy, Aptamer

Abstract

Chemotherapeutic experts have been utilised to cure a variety of disorders, but their practical application is restricted due to their regrettable selectivity and outrageous fundamental optional effects. Short single-stranded DNA or RNA oligonucleotides known as aptamers are released from randomised libraries and have strong propensity and differentiation towards targets like antibodies as well as characterised structures and ties to targets like proteins. They commonly suppress protein interactions while restricting proteins, which may elicit positive effects like threat. Aptamers have recently demonstrated their amazing promise for use in medicines, biosensors, and bioimaging thanks to a number of advantages, such as minimal immunogenicity, simplicity of giant degree blend, low pack to-bunch collection, genuinely substance modification, and programmability. At any rate, the steady for the most part accomplishment speed of aptamer is far from being brilliant, despite everything needs to overwhelm the gigantic obstruction in propensity, constancy for utilitarian application, explicit illness cell affirmation. The sensible method of controlling the binding execution of aptamers and dealing with their show in the practical application is of great significance and these single-abandoned DNA or RNA aptamers could outline with astoundingly poisonous chemotherapy drugs, hurts, strong RNAs or different particles as novel aptamer-drug structures, which are prepared to do endlessly out working on the obliging plentifulness and decreasing the critical danger of solutions and have unprecedented possible in living spaces for appointed ailment treatment. In this survey, we have extensively covered and summarised the ongoing improvements in the aptamer-drug structure philosophy for designated drug transport in the assessment methodologies of aptamers for unambiguous disease biomarkers. A modified strategy utilising aptamers could be a reliable system for quick and precise advancement of biopharmaceutics for use in infection-related treatment, especially in light of the enormous advances in modernised thinking for protein and RNA structure conjectures. Additionally, the likelihood of future conception is also summarised.

Downloads

Download data is not yet available.

References

Alshaer W, Hillaireau H, Fattal EJA. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev. 2018 Sep;134:122-37. doi: 10.1016/j.addr.2018.09.011, PMID 30267743.

Guan B, Zhang X. Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int J Nanomedicine. 2020;15:1059-71. doi: 10.2147/IJN.S237544, PMID 32110008.

Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020 Oct;11(23):6902-15. doi: 10.7150/jca.49532, PMID 33123281.

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108, PMID 27834398.

Quader S, Kataoka K. Nanomaterial enabled cancer therapy. Mol Ther. 2017 Jul;25(7):1501-13. doi: 10.1016/j.ymthe.2017.04.026, PMID 28532763.

Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019 Feb;37(1):28-50. doi: 10.1016/j.biotechadv.2018.11.001, PMID 30408510.

Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK. Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol. 2012 Mar;4(3):1-9. doi: 10.1101/cshperspect.a003582, PMID 21441582.

Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. doi: 10.2174/092986711797189600, PMID 21838685.

Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev. 2018 Sep;134:3-21. doi: 10.1016/j.addr.2018.04.007, PMID 29626546.

Yoo H, Jo H, Oh SS. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater Adv. 2020 Oct;1(8):2663-87. doi: 10.1039/D0MA00639D.

Song Y, Song J, Wei X, Huang M, Sun M, Zhu L. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal Chem. 2020;92(14):9895-900. doi: 10.1021/acs.analchem.0c01394, PMID 32551560.

Kruger A, de Jesus Santos AP, de Sa V, Ulrich H, Wrenger C. Aptamer applications in emerging viral diseases. Pharmaceuticals (Basel). 2021 Jun;14(7):1-19. doi: 10.3390/ph14070622, PMID 34203242.

Barman J. Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Adv. 2015 Jan;5(16):11724-32. doi: 10.1039/C4RA12407C.

Vinores SA. Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomedicine. 2006 Sep;1(3):263-8. PMID 17717967.

Lao YH, Phua KKL, Leong KW. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano. 2015 Mar;9(3):2235-54. doi: 10.1021/nn507494p, PMID 25731717.

Maier KE, Levy M. From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev. 2016 Apr;5:16014. doi: 10.1038/mtm.2016.14, PMID 27088106.

Mallikaratchy P. Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens. Molecules. 2017 Jan;22(2):215. doi: 10.3390/molecules22020215, PMID 28146093.

Engelberg S, Modrejewski J, Walter JG, Livney YD, Assaraf YG. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget. 2018 Apr;9(30):20993-1006. doi: 10.18632/oncotarget.24772, PMID 29765515.

Futami K, Kimoto M, Lim YWS, Hirao I. Genetic alphabet expansion provides versatile specificities and activities of unnatural-base DNA aptamers targeting cancer cells. Mol Ther Nucleic Acids. 2019 Mar;14:158-70. doi: 10.1016/j.omtn.2018.11.011, PMID 30594072.

Gao H, Qian J, Cao S, Yang Z, Pang Z, Pan S. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012 Jul;33(20):5115-23. doi: 10.1016/j.biomaterials.2012.03.058, PMID 22484043.

Gao H, Qian J, Yang Z, Pang Z, Xi Z, Cao S. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials. 2012 Sep;33(26):6264-72. doi: 10.1016/j.biomaterials.2012.05.020, PMID 22683171.

Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017 Mar;16(3):181-202. doi: 10.1038/nrd.2016.199, PMID 27807347.

Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Nat. 2013 Oct;5(4):34-43. doi: 10.32607/20758251-2013-5-4-34-43, PMID 24455181.

Levy Nissenbaum E, Radovic Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008 Jun;26(8):442-9. doi: 10.1016/j.tibtech.2008.04.006, PMID 18571753.

Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides. 2009 Sep;19(3):209-22. doi: 10.1089/oli.2009.0199, PMID 19653880.

Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir. 2008 Oct 21;24(20):11860-5. doi: 10.1021/la801969c, PMID 18817428.

Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R. Screening of DNA aptamers against myoglobin using a positive and negative selection unit integrated microfluidic chip and its biosensing application. Anal Chem. 2014 Jul 1;86(13):6572-9. doi: 10.1021/ac501088q, PMID 24914856.

Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 2005 Oct;77(19):6107-12. doi: 10.1021/ac050836q, PMID 16194066.

Ahn JY, Jo M, Dua P, Lee DK, Kim S. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection. Oligonucleotides. 2011 Mar;21(2):93-100. doi: 10.1089/oli.2010.0263, PMID 21413890.

Khan S, Hussain A, Fahimi H, Aliakbari F, Haj Bloukh S, Edis Z. A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. Arab J Chem. 2022;15(2):103626. doi: 10.1016/j.arabjc.2021.103626.

Taghavi Estevez AS, Sahar N, Hashem A, Khalil A, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Letter to the editor. Int J Pharm. 2016 Jan;497(1):2-42.

Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019 Jan;24(5):941. doi: 10.3390/molecules24050941, PMID 30866536.

Mercier MC, Dontenwill M, Choulier L. Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers (Basel). 2017 Jun;9(6):69. doi: 10.3390/cancers9060069, PMID 28635657.

Yang C, Jiang Y, Hao SH, Yan XY, Hong F, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B. 2021 Dec 22;10(1):20-33. doi: 10.1039/d1tb02098f, PMID 34881767.

Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem. 2012;2012:415697. doi: 10.1155/2012/415697, PMID 23326761.

Lauridsen LH, Doessing HB, Long KS, Nielsen AT. A capture-SELEX strategy for multiplexed selection of RNA aptamers against small molecules, Synth. Metab Pathw. 2018;(1671):291-306.

Yang J, Bowser MT. Capillary electrophoresis-SELEX selection of catalytic DNA Aptamers for a small-molecule porphyrin target. Anal Chem. 2013 Feb;85(3):1525-30. doi: 10.1021/ac302721j, PMID 23234289.

Hamedani NS, Müller J. Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C. Methods Mol Biol. 2016;1380:61-75. doi: 10.1007/978-1-4939-3197-2_5, PMID 26552816.

Takenaka M, Okumura Y, Amino T, Miyachi Y, Ogino C, Kondo A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg Med Chem Lett. 2017;27(4):954-7. doi: 10.1016/j.bmcl.2016.12.080, PMID 28094182.

Miyachi Y, Shimizu N, Ogino C, Kondo A. Selection of DNA aptamers using atomic force microscopy. Nucleic Acids Res. 2010 Mar;38(4):e21. doi: 10.1093/nar/gkp1101, PMID 19955232.

Ahn JY, Lee S, Jo M, Kang J, Kim E, Jeong OC. Sol-gel derived nanoporous compositions for entrapping small molecules and their outlook toward aptamer screening. Anal Chem. 2012 Mar;84(6):2647-53. doi: 10.1021/ac202559w, PMID 22283623.

Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces. 2016 Jul 1;143:224-32. doi: 10.1016/j.colsurfb.2016.02.058, PMID 27015647.

Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc. 2010 Dec;5(12):1993-2004. doi: 10.1038/nprot.2010.163, PMID 21127492.

Oh SS, Qian J, Lou X, Zhang Y, Xiao Y, Soh HT. Generation of highly specific aptamers via micromagnetic selection. Anal Chem. 2009 Jul;81(13):5490-5. doi: 10.1021/ac900759k, PMID 19480397.

Tawiah KD, Porciani D, Burke DH. Toward the selection of cell targeting aptamers with extended biological functionalities to facilitate endosomal escape of cargoes. Biomedicines. 2017 Aug 24;5(3):51. doi: 10.3390/biomedicines5030051, PMID 28837119.

Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc. 2010 Dec;5(12):1993-2004. doi: 10.1038/nprot.2010.163, PMID 21127492.

Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005 Jun;20(12):2424-34. doi: 10.1016/j.bios.2004.11.006, PMID 15854817.

Sun W, Du L, Li M. Advances and perspectives in cell-specific aptamers. Curr Pharm Des. 2011;17(1):80-91. doi: 10.2174/138161211795049769, PMID 21342116.

Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013 Oct;8(10):1940-9. doi: 10.1038/nprot.2013.125, PMID 24030442.

Zumrut HE, Ara MN, Fraile M, Maio G, Mallikaratchy P. Ligand-guided selection of target-specific aptamers: a screening technology for identifying specific aptamers against cell-surface proteins. Nucleic Acid Ther. 2016 Jun;26(3):190-8. doi: 10.1089/nat.2016.0611, PMID 27148897.

Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem. 2001 Dec;276(52):48644-54. doi: 10.1074/jbc.M104651200, PMID 11590140.

Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012 Nov;109(11):2920-31. doi: 10.1002/bit.24558, PMID 22615073.

Almasi F, Mousavi Gargari SL, Bitaraf F, Rasoulinejad S. Development of a single stranded DNA aptamer as a molecular probe for lncap cells using CELL-SELEX. Avicenna J Med Biotechnol. 2016 Jul;8(3):104-11, PMID 27563422.

Wang L, Wang R, Chen F, Jiang T, Wang H, Slavik M. Qcm-based aptamer selection and detection of salmonella typhimurium. Food Chem. 2017 Apr;221:776-82. doi: 10.1016/j.foodchem.2016.11.104, PMID 27979272.

Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc. 2004 Jan;126(1):20-1. doi: 10.1021/ja037832s, PMID 14709039.

Doerflinger A, Quang NN, Gravel E, Duconge F, Doris E. Aptamer-decorated polydiacetylene micelles with improved targeting of cancer cells. Int J Pharm. 2019 Jun 30;565:59-63. doi: 10.1016/j.ijpharm.2019.04.071, PMID 31029658.

Hamedani NS, Müller J. Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C. Methods Mol Biol. 2016;1380:61-75. doi: 10.1007/978-1-4939-3197-2_5, PMID 26552816.

Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2016;23(3):874-81. doi: 10.3109/10717544.2014.920059, PMID 24892627.

Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA. In vivo selection of tumor-targeting rna motifs. Nat Chem Biol. 2010 Jan;6(1):22-4. doi: 10.1038/nchembio.277, PMID 19946274.

Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL. In vivo selex for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids. 2013 Jan;2(1):e67. doi: 10.1038/mtna.2012.59, PMID 23299833.

Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc Natl Acad Sci USA. 2010 Aug;107(35):15373-8. doi: 10.1073/pnas.1009331107, PMID 20705898.

Berezhnoy A, Stewart CA, McNamara JO, Thiel W, Giangrande P, Trinchieri G. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 2012 Jun;20(6):1242-50. doi: 10.1038/mt.2012.18, PMID 22434135.

Scoville DJ, Uhm TK, Shallcross JA, Whelan RJ. Selection of DNA aptamers for ovarian cancer biomarker CA125 using one-pot selex and high-throughput sequencing. J Nucleic Acids. 2017 Feb;2017:9879135. doi: 10.1155/2017/9879135, PMID 28280637.

Thiel WH. Galaxy workflows for web-based bioinformatics analysis of aptamer high-throughput sequencing data. Mol Ther Nucleic Acids. 2016 Aug;5(8):e345. doi: 10.1038/mtna.2016.54, PMID 28131286.

Kanwar JR, Mohan RR, Kanwar RK, Roy K, Bawa R. Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine (Lond). 2010 Nov;5(9):1435-45. doi: 10.2217/nnm.10.115, PMID 21128724.

Wan Y, Kim YT, Li N, Cho SK, Bachoo R, Ellington AD. Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 2010 Nov 15;70(22):9371-80. doi: 10.1158/0008-5472.CAN-10-0568, PMID 21062984.

Li X, An Y, Jin J, Zhu Z, Hao L, Liu L. Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal Chem. 2015;87(9):4941-8. doi: 10.1021/acs.analchem.5b00637, PMID 25867099.

Takahashi M, Wu X, Ho M, Chomchan P, Rossi JJ, Burnett JC. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and pcr methods on selex efficiency. Sci Rep. 2016 Sep;6:33697. doi: 10.1038/srep33697, PMID 27652575.

Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem. 2013 Apr 16;85(8):4141-9. doi: 10.1021/ac400366b, PMID 23480100.

Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci. 2011 Jan 31;2(3):175-81. doi: 10.1021/cn100114k, PMID 21892384.

Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers against pro- and anti-inflammatory cytokines: a review. Inflammation. 2017 Feb;40(1):340-9. doi: 10.1007/s10753-016-0477-1, PMID 27878687.

Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine. 2015 Mar 31;10:2537-54. doi: 10.2147/IJN.S78498, PMID 25848270.

Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem. 2014 Jul 1;86(13):6572-9. doi: 10.1021/ac501088q, PMID 24914856.

Wu M, Zhao H, Guo L, Wang Y, Song J, Zhao X. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv. 2018 Nov;25(1):226-40. doi: 10.1080/10717544.2017.1422300, PMID 29313393.

Zhang J, Chen R, Chen F, Chen M, Wang Y. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles: a dual-functional strategy for paclitaxel delivery. J Control Release. 2015 Sep 10;213:e137-8. doi: 10.1016/j.jconrel.2015.05.232, PMID 27005093.

Xu D, Xu D, Yu X, Liu Z, He W, Ma Z. Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem. 2005 Aug;77(16):5107-13. doi: 10.1021/ac050192m, PMID 16097746.

Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta. 2007 Aug;598(2):242-8. doi: 10.1016/j.aca.2007.07.050, PMID 17719898.

Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem (Palo Alto Calif). 2009;2:241-64. doi: 10.1146/annurev.anchem.1.031207.112851, PMID 20636061.

Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron. 2005 Apr;20(10):2168-72. doi: 10.1016/j.bios.2004.09.002, PMID 15741093.

Zou X, Wu J, Gu J, Shen L, Mao L. Application of aptamers in virus detection and antiviral therapy. Front Microbiol. 2019 Jul;10:1462. doi: 10.3389/fmicb.2019.01462, PMID 31333603.

Mor Vaknin N, Saha A, Legendre M, Carmona Rivera C, Amin MA, Rabquer BJ. DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun. 2017 Feb 6;8:14252. doi: 10.1038/ncomms14252, PMID 28165452.

Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev. 2018 Sep;134:65-78. doi: 10.1016/j.addr.2018.08.005, PMID 30125604.

Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001 May;123(21):4928-31. doi: 10.1021/ja0038171, PMID 11457319.

Zhao W, Chiuman W, Brook MA, Li Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem. 2007 May;8(7):727-31. doi: 10.1002/cbic.200700014, PMID 17410623.

Chen Y, Wang J, Wang J, Wang L, Tan X, Tu K. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor-positive cervical cancer. J Biomed Nanotechnol. 2016 Apr;12(4):656-66. doi: 10.1166/jbn.2016.2203, PMID 27301192.

Hianik T, Ostatna V, Zajacova Z, Stoikova E, Evtugyn G. Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg Med Chem Lett. 2005 Jan;15(2):291-5. doi: 10.1016/j.bmcl.2004.10.083, PMID 15603942.

Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J Mater Chem B. 2020 Jan;8(4):655-65. doi: 10.1039/c9tb02284h, PMID 31904073.

Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb). 2010 Jan;46(2):249-51. doi: 10.1039/b916911c, PMID 20024341.

Sokoloski JE, Dombrowski SE, Bevilacqua PC. Thermodynamics of ligand binding to a heterogeneous rna population in the malachite green aptamer. Biochemistry. 2012 Jan;51(1):565-72. doi: 10.1021/bi201642p, PMID 22192051.

Tang Y, Hu H, Zhang MG, Song J, Nie L, Wang S. An aptamer-targeting photoresponsive drug delivery system using ”off-on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale. 2015 Apr 14;7(14):6304-10. doi: 10.1039/c4nr07493a, PMID 25782595.

Amero P, Esposito CL, Rienzo A, Moscato F, Catuogno S, de Franciscis V. Identification of an interfering ligand aptamer for EphB2/3 receptors. Nucleic Acid Ther. 2016 Apr;26(2):102-10. doi: 10.1089/nat.2015.0580, PMID 26824783.

Polonschii C, David S, Tombelli S, Mascini M, Gheorghiu MA. A Novel, low-cost and easy-to-develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance. Talanta. 2010 Mar;80(5):2157-64. doi: 10.1016/j.talanta.2009.11.023, PMID 20152466.

Quang NN, Miodek A, Cibiel A, Duconge F. Selection of aptamers against whole living cells: from CELL-SELEX to identification of biomarkers. Methods Mol Biol. 2017;1575:253-72. doi: 10.1007/978-1-4939-6857-2_16, PMID 28255886.

Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron. 1999 May;14(5):457-64. doi: 10.1016/s0956-5663(99)00028-7, PMID 10451913.

Li X, Zhang W, Liu L, Zhu Z, Ouyang G, An Y. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem. 2014 Jul 1;86(13):6596-603. doi: 10.1021/ac501205q, PMID 24892693.

Li X, Zhang W, Liu L, Zhu Z, Ouyang G, An Y. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem. 2014 Jun;86(13):6596-603. doi: 10.1021/ac501205q, PMID 24892693.

Pultar J, Sauer U, Domnanich P, Preininger C. Aptamer-antibody on-chip sandwich immunoassay for detection of CRP in spiked serum. Biosens Bioelectron. 2009 Mar;24(5):1456-61. doi: 10.1016/j.bios.2008.08.052, PMID 18951012.

Collett JR, Cho EJ, Ellington AD. Production and processing of aptamer microarrays. Methods. 2005 Apr;37(1):4-15. doi: 10.1016/j.ymeth.2005.05.009, PMID 16199170.

Porciani D, Signore G, Marchetti L, Mereghetti P, Nifosì R, Beltram F. Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. Mol Ther Nucleic Acids. 2014 Jan;3(1):e144. doi: 10.1038/mtna.2013.71, PMID 24472870.

Nishikawa F, Funaji K, Fukuda K, Nishikawa S. In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides. 2004;14(2):114-29. doi: 10.1089/1545457041526335, PMID 15294075.

Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLOS ONE. 2011 Jun;6(6):e20299. doi: 10.1371/journal.pone.0020299, PMID 21687663.

Volk DE, Lokesh GLR. Development of phosphorothioate DNA and DNA thioaptamers. Biomedicines. 2017 Jul 13;5(3):41. doi: 10.3390/biomedicines5030041, PMID 28703779.

Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal Chem. 2017 Mar;89(5):2844-51. doi: 10.1021/acs.analchem.6b03971, PMID 28192929.

Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002 Jul 15;62(14):4029-33, PMID 12124337.

Maier KE, Jangra RK, Shieh KR, Cureton DK, Xiao H, Snapp EL. A new transferrin receptor aptamer inhibits new world hemorrhagic fever Mammarenavirus entry. Mol Ther Nucleic Acids. 2016 May 24;5:e321. doi: 10.1038/mtna.2016.32, PMID 27219515.

Raddatz MS, Dolf A, Endl E, Knolle P, Famulok M, Mayer G. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem Int Ed Engl. 2008;47(28):5190-3. doi: 10.1002/anie.200800216, PMID 18512861.

Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLOS ONE. 2011;6(6):e20299. doi: 10.1371/journal.pone.0020299, PMID 21687663.

Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GL. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry. 2010 Oct 26;49(42):9106-12. doi: 10.1021/bi1009503, PMID 20843027.

Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017 Aug 1;400:1-8. doi: 10.1016/j.canlet.2017.04.008, PMID 28412238.

Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012 Jul;40(13):6319-37. doi: 10.1093/nar/gks294, PMID 22467215.

Raddatz MS, Dolf A, Endl E, Knolle P, Famulok M, Mayer G. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem Int Ed Engl. 2008;47(28):5190-3. doi: 10.1002/anie.200800216, PMID 18512861.

Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhaes M, Del Amo DS, Pai S. An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids. 2012 May 15;1(5):e21. doi: 10.1038/mtna.2012.14, PMID 23344001.

Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006 Jun;34(10):e73. doi: 10.1093/nar/gkl388, PMID 16740739.

Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009 Jun;86(3):151-64. doi: 10.1016/j.yexmp.2009.01.004, PMID 19454272.

Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay Luck N, Jones D. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol. 2009 Nov;76(5):984-91. doi: 10.1124/mol.109.055947, PMID 19657047.

Iaboni M, Fontanella R, Rienzo A, Capuozzo M, Nuzzo S, Santamaria G. Targeting insulin receptor with a novel internalizing aptamer. Mol Ther Nucleic Acids. 2016 Sep 20;5(9):e365. doi: 10.1038/mtna.2016.73, PMID 27648925.

Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther. 2008 Aug;16(8):1481-9. doi: 10.1038/mt.2008.92, PMID 18461053.

Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjug Chem. 2015 Jul;26(7):1307-13. doi: 10.1021/bc5004313, PMID 25343502.

McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006 Aug;24(8):1005-15. doi: 10.1038/nbt1223, PMID 16823371.

Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 2009 Dec;37(3):866-76. doi: 10.1093/nar/gkn967, PMID 19103663.

Harris MA, Pearce TR, Pengo T, Kuang H, Forster C, Kokkoli E. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo. Nanomedicine. 2018 Jan;14(1):85-96. doi: 10.1016/j.nano.2017.08.020, PMID 28912042.

McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006 Aug;24(8):1005-15. doi: 10.1038/nbt1223, PMID 16823371.

Jiang K, Han L, Guo Y, Zheng G, Fan L, Shen Z. A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells. J Mater Chem B. 2017 Dec 14;5(46):9121-9. doi: 10.1039/c7tb02562a, PMID 32264593.

Bagalkot V, Zhang L, Levy Nissenbaum E, Jon S, Kantoff PW, Langer R. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007 Oct;7(10):3065-70. doi: 10.1021/nl071546n, PMID 17854227.

Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW. Targeted nanoparticle-aptamer bioconjugates for cancer. chemotherapy in vivo. Proc Natl Acad Sci USA. 2006 Apr 18;103(16):6315-20. doi: 10.1073/pnas.0601755103.

Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA. 2010 Jan 5;107(1):5-10. doi: 10.1073/pnas.0909611107, PMID 20080797.

Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J. Tumor targeting by an aptamer. J Nucl Med. 2006 Apr;47(4):668-78. PMID 16595502.

Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004 Nov;64(21):7668-72. doi: 10.1158/0008-5472.CAN-04-2550, PMID 15520166.

Peng L, Liang Y, Zhong X, Liang Z, Tian Y, Li S. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. Int J Nanomedicine. 2020 Feb 28;15:1363-72. doi: 10.2147/IJN.S238206, PMID 32184591.

Charbgoo F, Alibolandi M, Taghdisi SM, Abnous K, Soltani F, Ramezani M. MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomedicine. 2018 Apr;14(3):685-97. doi: 10.1016/j.nano.2017.12.010, PMID 29317345.

Yang H, Lu WL, Huang T, Chen QY, Gao J, Zhao Y. An aptamer-Fe3+ modified nanoparticle for lactate oxidation and tumor photodynamic therapy. Colloids Surf B Biointerfaces. 2018 Apr 1;164:192-200. doi: 10.1016/j.colsurfb.2018.01.045, PMID 29413596.

Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces. 2021;13(8):9500-19. doi: 10.1021/acsami.0c05750, PMID 32603135.

Baneshi M, Dadfarnia S, Shabani AMH, Sabbagh SK, Haghgoo S, Bardania H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm. 2019 Jun 10;564:145-52. doi: 10.1016/j.ijpharm.2019.04.025, PMID 30978484.

Xiao Z, Levy Nissenbaum E, Alexis F, Luptak A, Teply BA, Chan JM. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012 Jan 24;6(1):696-704. doi: 10.1021/nn204165v, PMID 22214176.

Amero P, Lokesh GLR, Chaudhari RR, Cardenas Zuniga R, Schubert T, Attia YM. Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J Am Chem Soc. 2021 May;143(20):7655-70. doi: 10.1021/jacs.9b10460, PMID 33988982.

Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006 Feb;5(2):123-32. doi: 10.1038/nrd1955, PMID 16518379.

Tekie FSM, Soleimani M, Zakerian A, Dinarvand M, Amini M, Dinarvand R. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr Polym. 2018 Dec 1;201:131-40. doi: 10.1016/j.carbpol.2018.08.060, PMID 30241804.

Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther. 2008 Aug;16(8):1481-9. doi: 10.1038/mt.2008.92, PMID 18461053.

Shieh YA, Yang SJ, Wei MF, Shieh MJ. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano. 2010 Mar 23;4(3):1433-42. doi: 10.1021/nn901374b, PMID 20166743.

Ludwig H, Weisel K, Petrucci MT, Leleu X, Cafro AM, Garderet L. Olaptesed pegol, an anti-CXCL12/SDF-1 spiegelmer, alone and with bortezomib–dexamethasone in relapsed/refractory multiple myeloma: a phase iia study. Leukemia. 2017 Apr;31(4):997-1000. doi: 10.1038/leu.2017.5, PMID 28074071.

Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay Luck N, Jones D. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol. 2009 Nov;76(5):984-91. doi: 10.1124/mol.109.055947, PMID 19657047.

Waldschmidt JM, Simon A, Wider D, Muller SJ, Follo M, Ihorst G, Decker S, Lorenz J, Chatterjee M, Azab AK. CXCL 12 and CXCR 7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br J Haematol. 2017 Oct;179(1):36–49.

Tao W, Zeng X, Wu J, Zhu X, Yu X, Zhang X. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics. 2016 Feb 11;6(4):470-84. doi: 10.7150/thno.14184, PMID 26941841.

Troisi R, Napolitano V, Spiridonova V, Russo Krauss I, Sica F. Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Res. 2018 Dec;46(22):12177-85. doi: 10.1093/nar/gky990, PMID 30357392.

Xu L, He XY, Liu BY, Xu C, Ai SL, Zhuo RX. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces. 2018 Nov 1;171:24-30. doi: 10.1016/j.colsurfb.2018.07.008, PMID 30005287.

Li H, Mu Y, Lu J, Wei W, Wan Y, Liu S. Target-cell-specific fluorescence silica Nanoprobes for imaging and theranostics of cancer cells. Anal Chem. 2014 Apr 1;86(7):3602-9. doi: 10.1021/ac500173d, PMID 24576151.

Petrukhin K. Recent developments in agents for the treatment of age-related macular degeneration and Stargardt disease. Drug Deliv Chall Novel Ther Approaches Retin Dis. 2020 Jul;105:125-60.

Zhang Y, Zhao J, Sun J, Huang L, Li Q. Targeting lung cancer initiating cells by all-trans retinoic acid-loaded lipid-PLGA nanoparticles with CD133 aptamers. Exp Ther Med. 2018 Dec;16(6):4639-49. doi: 10.3892/etm.2018.6762, PMID 30542415.

Dong J, Cao Y, Shen H, Ma Q, Mao S, Li S. EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomed Pharmacother. 2018 Nov;107:849-59. doi: 10.1016/j.biopha.2018.08.042, PMID 30142547.

Shieh YA, Yang SJ, Wei MF, Shieh MJ. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano. 2010 Mar 23;4(3):1433-42. doi: 10.1021/nn901374b, PMID 20166743.

Mayr FB, Knobl P, Jilma B, Siller Matula JM, Wagner PG, Schaub RG, Gilbert JC, Jilma Stohlawetz Z. The aptamer ARC1779 blocks von Willebrandfactor–dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion. 2010 May;50(5):1079–87.

Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD. Correction: directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb). 2020 Apr 21;56(31):4368. doi: 10.1039/d0cc90149k, PMID 32242585.

Grabowska Jadach I, Kalinowska D, Drozd M, Pietrzak M. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-new particles for theranostics. Biomed Pharmacother. 2019 Mar;111:1147-55. doi: 10.1016/j.biopha.2019.01.037, PMID 30841428.

Matsunaga KI, Kimoto M, Hirao I. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J Am Chem Soc. 2017 Jan;139(1):324-34. doi: 10.1021/jacs.6b10767, PMID 27966933.

Jaffe GJ, Eliott D, Wells JA, Prenner JL, Papp A, Patel S. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2016 Jan;123(1):78-85. doi: 10.1016/j.ophtha.2015.09.004, PMID 26499921.

Zou J, Shi M, Liu X, Jin C, Xing X, Qiu L. Aptamer-functionalized exosomes: elucidating the cellular uptake mechanism and the potential for cancer-targeted chemotherapy. Anal Chem. 2019 Feb 5;91(3):2425-30. doi: 10.1021/acs.analchem.8b05204, PMID 30620179.

Bagalkot V, Gao X. siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing. ACS Nano. 2011 Oct 25;5(10):8131-9. doi: 10.1021/nn202772p, PMID 21936502.

Chen HY, Albert K, Wen CC, Hsieh PY, Chen SY, Huang NC. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing. Colloids Surf B Biointerfaces. 2017;152:423-31. doi: 10.1016/j.colsurfb.2017.01.048, PMID 28171795.

Chen CH, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci USA. 2008 Oct 14;105(41):15908-13. doi: 10.1073/pnas.0808360105, PMID 18838694.

Pascual L, Cerqueira Coutinho C. Garcıa Fernandez A, de Luis B, Bernardes ES, Albernaz MS, Missailidis S, Martınez Manez R, Santos Oliveira R, Orzaez MJNN. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Biol Med. 2017 Nov;13(8):2495-505.

Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011 Aug 8;7(15):2241-9. doi: 10.1002/smll.201100472, PMID 21648076.

Monaco I, Camorani S, Colecchia D, Locatelli E, Calandro P, Oudin A. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier. J Med Chem. 2017 May 25;60(10):4510-6. doi: 10.1021/acs.jmedchem.7b00527, PMID 28471660.

Binaymotlagh R, Hajareh Haghighi FH, Aboutalebi F, Mirahmadi Zare SZ, Hadadzadeh H, Nasr Esfahani MHJN. Selective chemotherapy and imaging of colorectal and breast cancer cells by a modified MUC-1 aptamer conjugated to a poly (ethylene glycol)-dimethacrylate coated Fe3O4−AuNCs nanocomposite. New J Chem. 2019 Nov;43(1):238-48. doi: 10.1039/C8NJ04236E.

Zhao C, Song X, Jin W, Wu F, Zhang Q, Zhang M. Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal Chim Acta. 2019 May;1056:108-16. doi: 10.1016/j.aca.2018.12.045, PMID 30797451.

Wu X, Tai Z, Zhu Q, Fan W, Ding B, Zhang W. Study on the prostate cancer-targeting mechanism of aptamer-modified nanoparticles and their potential anticancer effect in vivo. Int J Nanomedicine. 2014 Nov 21;9:5431-40. doi: 10.2147/IJN.S71101, PMID 25473281.

Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani MJE. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA unnatural-base DNA aptamers targeting cancer cells. Molecular Therapy-Nucleic Acids Biopharmaceutics. 2017 Apr;14:158-70.

Shi H, Ye X, He X, Wang K, Cui W, He D. Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart ”nano-doctors” for image-guided cancer thermotherapy. Nanoscale. 2014 May;6(15):8754-61. doi: 10.1039/C4NR01927J.

Wen S, Miao X, Fan GC, Xu T, Jiang LP, Wu P. Aptamer-conjugated au nanocage/SiO2 core-shell bifunctional nanoprobes with high stability and biocompatibility for cellular SERS imaging and near-infrared photothermal therapy. ACS Sens. 2019 Feb;4(2):301-8. doi: 10.1021/acssensors.8b00682, PMID 30624040.

Aravind A, Varghese SH, Veeranarayanan S, Mathew A, Nagaoka Y, Iwai S. Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol. 2012;3(1-6):1-12. doi: 10.1007/s12645-011-0024-6, PMID 26069492.

Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials. 2014 Apr;35(12):3840-50. doi: 10.1016/j.biomaterials.2014.01.019, PMID 24486214.

Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl Mater Interfaces. 2015 Mar;7(9):5097-106. doi: 10.1021/am508117e, PMID 25705789.

Kolovskaya OS, Zamay TN, Zamay GS, Babkin VA, Medvedeva EN, Neverova NA. Aptamer-conjugated superparamagnetic Ferroarabinogalactan nanoparticles for targeted magnetodynamic therapy of cancer. Cancers. 2020 Jan;12(1):216. doi: 10.3390/cancers12010216, PMID 31952299.

Ma J, Zhuang H, Zhuang Z, Lu Y, Xia R, Gan L. Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1864-71. doi: 10.1080/21691401.2017.1394874, PMID 29082764.

Vandghanooni S, Eskandani M, Barar J, Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond). 2018 Nov;13(21):2729-58. doi: 10.2217/nnm-2018-0205, PMID 30394201.

Moosavian SA, Abnous K, Badiee A, Jaafari MR. Improvement in the drug delivery and anti-tumor efficacy of pegylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf B Biointerfaces. 2016 Mar;139:228-36. doi: 10.1016/j.colsurfb.2015.12.009, PMID 26722819.

Cadinoiu AN, Rata DM, Atanase LI, Daraba OM, Gherghel D, Vochita G. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers. 2019 Sep;11(9):1515. doi: 10.3390/polym11091515, PMID 31540426.

Erin N, Dilmac S, Curry A, Duymuş O, Tanriover G, Prodeus A. CD200 mimetic aptamer PEG-M49 markedly increases the therapeutic effects of pegylated liposomal doxorubicin in a mouse model of metastatic breast carcinoma: an effect independent of CD200 receptor 1. Cancer Immunol Immunother. 2020;69(1):103-14. doi: 10.1007/s00262-019-02444-3, PMID 31811336.

Mashreghi M, Zamani P, Moosavian SA, Jaafari MR. Anti-Epcam aptamer (Syl3c)-functionalized liposome for targeted delivery of doxorubicin: in vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma. Nanoscale Res Lett. 2020 May;15(1):101. doi: 10.1186/s11671-020-03334-9, PMID 32383027.

Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles. Int J Pharm. 2015 Oct 15;494(1):430-44. doi: 10.1016/j.ijpharm.2015.08.060, PMID 26315125.

Wang H, Zhu Z, Zhang G, Lin F, Liu Y, Zhang Y. AS1411 Aptamer/hyaluronic acid-biofunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J Pharm Sci. 2019;108(11):3684-94. doi: 10.1016/j.xphs.2019.08.017, PMID 31465736.

Zhao Y, Xu J, Le VM, Gong Q, Li S, Gao F. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm. 2019;16(11):4696-710. doi: 10.1021/acs.molpharmaceut.9b00867, PMID 31589818.

Song X, Ren Y, Zhang J, Wang G, Han X, Zheng W. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes. Oncol Rep. 2015 Oct;34(4):1953-60. doi: 10.3892/or.2015.4136, PMID 26238192.

Atabi F, Mousavi Gargari SL, Hashemi M, Yaghmaei P. Doxorubicin loaded DNA aptamer linked myristilated chitosan nanogel for targeted drug delivery to prostate cancer. Iran J Pharm Res. 2017 Aug;16(1):35-49. PMID 28496460.

Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J Mater Chem B. 2020 Nov;8(16):3527-33. doi: 10.1039/c9tb01610d, PMID 31737891.

Pan Q, Nie C, Hu Y, Yi J, Liu C, Zhang J. Aptamer-functionalized DNA origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells. ACS Appl Mater Interfaces. 2020 Jan 8;12(1):400-9. doi: 10.1021/acsami.9b20707, PMID 31815420.

Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J. An aptamer-nanotrain assembled from six-letter DNA delivers doxorubicin selectively to liver cancer cells. Angew Chem Int Ed Engl. 2020 Jan 7;59(2):663-8. doi: 10.1002/anie.201909691, PMID 31650689.

Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. Int J Pharm. 2015 Oct;494(1):430-44. doi: 10.1016/j.ijpharm.2015.08.060, PMID 26315125.

Yang Y, Zhao W, Tan W, Lai Z, Fang D, Jiang L. An efficient cell-targeting drug delivery system based on aptamer-modified mesoporous silica nanoparticles. Nanoscale Res Lett. 2019;14(1):390. doi: 10.1186/s11671-019-3208-3, PMID 31872318.

Esfandyari Manesh M, Mohammadi A, Atyabi F, Nabavi SM, Ebrahimi SM, Shahmoradi E. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Int J Pharm. 2016 Dec;515(1-2):607-15. doi: 10.1016/j.ijpharm.2016.10.066, PMID 27989825.

Barzegar Behrooz A, Nabavizadeh F, Adiban J, Shafiee Ardestani M, Vahabpour R, Aghasadeghi MR. Smart bomb AS1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol. 2017 Jan;44(1):41-51. doi: 10.1111/1440-1681.12670, PMID 27626786.

Alibolandi M, Taghdisi SM, Ramezani P, Hosseini Shamili FH, Farzad SA, Abnous K. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm. 2017 Mar;519(1-2):352-64. doi: 10.1016/j.ijpharm.2017.01.044, PMID 28126548.

Chen H, Tian J, Liu D, He W, Guo Z. Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B. 2017 Dec;5(5):972-9. doi: 10.1039/c6tb02714h, PMID 32263875.

Lee IH, An S, Yu MK, Kwon HK, Im SH, Jon S. Targeted chemoimmunotherapy using drug-loaded aptamer–dendrimer bioconjugates. J Control Release. 2011;155(3):435-41. doi: 10.1016/j.jconrel.2011.05.025, PMID 21641946.

Zhou J, Soontornworajit B, Martin J, Sullenger BA, Gilboa E, Wang Y. A hybrid DNA aptamer-dendrimer nanomaterial for targeted cell labeling. Macromol Biosci. 2009 Sep;9(9):831-5. doi: 10.1002/mabi.200900046, PMID 19434675.

Ryou SM, Yeom JH, Kang HJ, Won M, Kim JS, Lee B. Gold nanoparticle-DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins. J Control Release. 2014 Dec 28;196:287-94. doi: 10.1016/j.jconrel.2014.10.021, PMID 25450403.

Wang H, Zhao X, Guo C, Ren D, Zhao Y, Xiao W. Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLOS ONE. 2015 Sep;10(9):e0139136. doi: 10.1371/journal.pone.0139136, PMID 26406332.

Ayatollahi S, Salmasi Z, Hashemi M, Askarian S, Oskuee RK, Abnous K. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol. 2017 Nov;92:210-7. doi: 10.1016/j.biocel.2017.10.005, PMID 29031805.

Bahreyni A, Alibolandi M, Ramezani M, Sarafan Sadeghi A, Abnous K, Taghdisi SM. A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf B Biointerfaces. 2019 Mar 1;175:231-8. doi: 10.1016/j.colsurfb.2018.12.006, PMID 30537619.

Li X, Yu Y, Ji Q, Qiu L. Targeted delivery of anticancer drugs by aptamer AS1411 mediated pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomed Nanotechnol Boil Med. 2015 Jan;11(1):175-84.

Ghassami E, Varshosaz J, Jahanian Najafabadi A, Minaiyan M, Rajabi P, Hayati E. Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex® nanoparticles for docetaxel delivery in ovarian cancer. Int J Nanomedicine. 2018 Jan 23;13:493-504. doi: 10.2147/IJN.S152474, PMID 29416331.

Askarian S, Abnous K, Taghavi S, Oskuee RK, Ramezani M. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids Surf B Biointerfaces. 2015 Dec;136:355-64. doi: 10.1016/j.colsurfb.2015.09.023, PMID 26433348.

Subramanian N, Kanwar JR, Athalya PK, Janakiraman N, Khetan V, Kanwar RK. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci. 2015 Jan;22(4):4. doi: 10.1186/s12929-014-0108-9, PMID 25576037.

Khezrian S, Khoee S, Caceres M. Synthesis of combinatorial Janus nanoparticles based on EpCAM-PEG/PCL for targeted therapy of human colorectal adenocarcinoma. J Biomedical Materials Res. 2020 Nov;108(11):2291-304. doi: 10.1002/jbm.a.36986.

Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013 Jul;34(21):5244-53. doi: 10.1016/j.biomaterials.2013.03.006, PMID 23582862.

Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett. 2018 Mar;416:87-93. doi: 10.1016/j.canlet.2017.12.023, PMID 29253524.

Liu H, Sun N, Ding P, Chen C, Wu Z, Zhu W. Fabrication of aptamer modified TiO2 nanofibers for specific capture of circulating tumor cells. Colloids Surf B Biointerfaces. 2020 Jul;191:110985. doi: 10.1016/j.colsurfb.2020.110985, PMID 32247218.

Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh DH. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys. 2019 Aug 15;671:143-51. doi: 10.1016/j.abb.2019.07.004, PMID 31283911.

Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 2008 Sep;3(9):1311-5. doi: 10.1002/cmdc.200800091, PMID 18613203.

Jalalian SH, Taghdisi SM, Shahidi Hamedani NS, Kalat SAM, Lavaee P, Zandkarimi M. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci. 2013 Oct;50(2):191-7. doi: 10.1016/j.ejps.2013.06.015, PMID 23835028.

Wu C, Han D, Chen T, Peng L, Zhu G, You M. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc. 2013 Nov;135(49):18644-50. doi: 10.1021/ja4094617, PMID 24245521.

Li F, Mei H, Xie X, Zhang H, Liu J, Lv T. Aptamer-conjugated chitosan-anchored liposomal complexes for targeted delivery of erlotinib to EGFR-mutated lung cancer cells. AAPS J. 2017 May;19(3):814-26. doi: 10.1208/s12248-017-0057-9, PMID 28233244.

Zhuang Y, Deng H, SuY, He L, Wang R, Tong G, He D, Zhu X. Aptamer-functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy. Biomacromolecules. 2016;(17):2050–62.

Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep. 2015 Jan 19;5:7851. doi: 10.1038/srep07851, PMID 25597762.

Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol. 2019 Nov;24(9):1063-75. doi: 10.1080/10837450.2019.1569678, PMID 30654677.

Guo W, Mashimo Y, Kobatake E, Mie M. Construction of DNA-displaying nanoparticles by enzymatic conjugation of DNA and elastin-like polypeptides using a replication initiation protein. Nanotechnology. 2020 Apr;31(25):255102. doi: 10.1088/1361-6528/ab8042, PMID 32176872.

Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh DH. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys. 2019 Aug;671:143-51. doi: 10.1016/j.abb.2019.07.004, PMID 31283911.

Xu G, Yu X, Zhang J, Sheng Y, Liu G, Tao W. Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomedicine. 2016 Jun;11:2953-65. doi: 10.2147/IJN.S103513, PMID 27382282.

Zeng Z, Tung CH, Zu Y. Aptamer-equipped protamine nanomedicine for precision lymphoma therapy. Cancers. 2020 Apr;12(4):780. doi: 10.3390/cancers12040780, PMID 32218299.

Yao F, An Y, Li X, Li Z, Duan J, Yang XD. Targeted therapy of colon cancer by aptamer-guided Holliday junctions loaded with doxorubicin. Int J Nanomedicine. 2020 Mar;15:2119-29. doi: 10.2147/IJN.S240083, PMID 32280210.

Mie M, Matsumoto R, Mashimo Y, Cass AEG, Kobatake E. Development of drug-loaded protein nanoparticles displaying enzymatically-conjugated DNA aptamers for cancer cell targeting. Mol Biol Rep. 2019;46(1):261-9. doi: 10.1007/s11033-018-4467-2, PMID 30421127.

Zhang Y, Chang YQ, Han L, Zhang Y, Chen ML, Shu Y. Aptamer-anchored di-polymer shell-capped mesoporous carbon as a drug carrier for bi-trigger targeted drug delivery. J Mater Chem B. 2017 Sep 7;5(33):6882-9. doi: 10.1039/c7tb01528c, PMID 32264337.

Perepelyuk M, Sacko K, Thangavel K, Shoyele SA. Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to nonsmall cell lung cancer. Mol Pharm. 2018 Mar;15(3):985-93. doi: 10.1021/acs.molpharmaceut.7b00900, PMID 29432024.

Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M. Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun. 2018 Feb;9(1):535. doi: 10.1038/s41467-018-02929-2, PMID 29416033.

Taghdisi SM, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Robati RY. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016 May;102:152-8. doi: 10.1016/j.ejpb.2016.03.013, PMID 26987703.

Chang M, Yang CS, Huang DM. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano. 2011 Aug;5(8):6156-63. doi: 10.1021/nn200693a, PMID 21732610.

Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA. 2013 May;110(20):7998-8003. doi: 10.1073/pnas.1220817110, PMID 23630258.

Xu Z, Ni R, Chen Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int J Nanomedicine. 2019 Aug;14:6831-42. doi: 10.2147/IJN.S200482, PMID 31695364.

Pi F, Zhang H, Li H, Thiviyanathan V, Gorenstein DG, Sood AK. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine. 2017 Apr;13(3):1183-93. doi: 10.1016/j.nano.2016.11.015, PMID 27890659.

Zhao N, Zeng Z, Zu Y. Self-assembled aptamer-nanomedicine for targeted chemotherapy and gene therapy. Small (Weinh Bergstr Ger). 2017 Jan;14(4):1702103.

Shi S, Fu W, Lin S, Tian T, Li S, Shao X. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine. 2019 Oct;21:102061. doi: 10.1016/j.nano.2019.102061, PMID 31344499.

Srivithya V, Roun H, Sekhar Babu M, Jae Hyung P, Sung Ha P. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules. Nanotechnology. 2018 Mar;29(9):095602. doi: 10.1088/1361-6528/aaa3cb, PMID 29271356.

Porciani D, Signore G, Marchetti L, Mereghetti P, Nifosì R, Beltram F. Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. Mol Ther Nucleic Acids. 2014 Jan;3(1):e144. doi: 10.1038/mtna.2013.71, PMID 24472870.

Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLOS ONE. 2011 Jun;6(6):e20299. doi: 10.1371/journal.pone.0020299, PMID 21687663.

Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA. 2006 Aug;103(32):11838-43. doi: 10.1073/pnas.0602615103, PMID 16873550.

Smith JD, Cardwell LN, Porciani D, Nguyen AJ, Zhang R, Gallazzi F, Tata RR, Burke DH, Daniels MA, Ulery BD. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Phys Biol. 2018;(15):065006.

Li Z, Liu Z, Yin M, Yang X, Yuan Q, Ren J. Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging. Biomacromolecules. 2012 Dec 10;13(12):4257-63. doi: 10.1021/bm301563q, PMID 23140615.

Ouyang C, Zhang S, Xue C, Yu X, Xu H, Wang Z. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J Am Chem Soc. 2020;142(3):1265-77. doi: 10.1021/jacs.9b09782, PMID 31895985.

Yang S, Ren Z, Chen M, Wang Y, You B, Chen W. Nucleolin-targeting AS1411-Aptamer-modified graft polymeric micelle with dual pH/redox sensitivity designed to enhance tumor therapy through the codelivery of doxorubicin/TLR4 siRNA and suppression of invasion. Mol Pharm. 2018;15(1):314-25. doi: 10.1021/acs.molpharmaceut.7b01093, PMID 29250957.

Chandra S, Michael Nguyen H, Wiltz K, Hall N, Chaudhry S, Olverson G. Aptamer-functionalized hybrid nanoparticles to enhance the delivery of doxorubicin into breast cancer cells by silencing P-glycoprotein. J Cancer Treatment Diagn. 2020;4(1):1-13. doi: 10.29245/2578-2967/2020/1.1176, PMID 32395707.

Chen R, Sun P, Chu X, Pu X, Yang Y, Zhang N. Synergistic treatment of tumor by targeted biotherapy and chemotherapy via site-specific anchoring of aptamers on DNA nanotubes. Int J Nanomedicine. 2020 Feb 27;15:1309-20. doi: 10.2147/IJN.S225142, PMID 32161460.

Li L, Xiang D, Shigdar S, Yang W, Li Q, Lin J. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine. 2014;9:1083-96. doi: 10.2147/IJN.S59779, PMID 24591829.

Powell D, Chandra S, Dodson K, Shaheen F, Wiltz K, Ireland S. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017 May;114:108-18. doi: 10.1016/j.ejpb.2017.01.011, PMID 28131717.

Kim MW, Jeong HY, Kang SJ, Jeong IH, Choi MJ, You YM. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics. 2019 Jan 25;9(3):837-52. doi: 10.7150/thno.30228, PMID 30809312.

Zhao J, Liu P, Ma J, Li D, Yang H, Chen W. Enhancement of radiosensitization by silver nanoparticles functionalized with polyethylene glycol and aptamer As1411 for glioma irradiation therapy. Int J Nanomedicine. 2019 Dec 2;14:9483-96. doi: 10.2147/IJN.S224160, PMID 31819445.

Zaimy MA, Jebali A, Bazrafshan B, Mehrtashfar S, Shabani S, Tavakoli A. Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer. Cancer Gene Ther. 2016 Sep;23(9):315-20. doi: 10.1038/cgt.2016.33, PMID 27514505.

Yazdian Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS, Abnous K, Taghdisi SM. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm. 2019 Apr;45(4):603-10.

Guo X, Zhu X, Gao J, Liu D, Dong C, Jin X. PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma. Nanomedicine (Lond). 2017 Nov;12(21):2611-24. doi: 10.2217/nnm-2017-0130, PMID 28960167.

He XY, Ren XH, Peng Y, Zhang JP, Ai SL, Liu BY. Aptamer/peptide-functionalized genome-editing system for effective immune restoration through reversal of PD-L1-mediated cancer immunosuppression. Adv Mater. 2020 Apr;32(17):e2000208. doi: 10.1002/adma.202000208, PMID 32147886.

Chen WH, Yang Sung S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal-organic framework nanoparticles. Nanoscale. 2018 Mar 8;10(10):4650-7. doi: 10.1039/c8nr00193f, PMID 29465130.

Zhao Q, Li J, Wu B, Shang Y, Huang X, Dong H. Smart biomimetic nanocomposites mediate mitochondrial outcome through aerobic glycolysis reprogramming: a promising treatment for lymphoma. ACS Appl Mater Interfaces. 2020 May 20;12(20):22687-701. doi: 10.1021/acsami.0c05763, PMID 32330381.

Lin HC, Li WT, Madanayake TW, Tao C, Niu Q, Yan SQ. Aptamer-guided upconversion nanoplatform for targeted drug delivery and near-infrared light-triggered photodynamic therapy. J Biomater Appl. 2020 Jan;34(6):875-88. doi: 10.1177/0885328219882152, PMID 31623518.

Wang T, Luo Y, Lv H, Wang J, Zhang Y, Pei R. Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and doxorubicin for the targeted treatment of multidrug-resistant tumors. ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45455-66. doi: 10.1021/acsami.9b16637, PMID 31718159.

Zhao Y, Wang J, Cai X, Ding P, Lv H, Pei R. Metal-organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl Mater Interfaces. 2020 May 27;12(21):23697-706. doi: 10.1021/acsami.0c04363, PMID 32362109.

Chan MH, Huang WT, Wang J, Liu RS, Hsiao M. Next-generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv Sci (Weinh). 2020 Mar 14;7(9):1903741. doi: 10.1002/advs.201903741, PMID 32382487.

Jiang J, Chen H, Yu C, Zhang Y, Chen M, Tian S. The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine (Lond). 2015 Jul;10(12):1863-79. doi: 10.2217/nnm.15.43, PMID 26139123.

ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT02686658?term=aptamer&rank=4. [Last accessed on 02 Feb 2016]

ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT01547897?term=NOX-E36&rank=3. [Last accessed on 27 Feb 2012]

ClinicalTrials.gov. Vol. 2. Available from: https://clinicaltrials.gov/ct2/show/NCT01848106?term=REG1&rank. [Last accessed on 02 May 2013]

Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013 Jan 23;48(1-2):259-71. doi: 10.1016/j.ejps.2012.10.014, PMID 23142634.

Bae ON. Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an Anti-vWF aptamer, against thrombotic risk. Arch Pharm Res. 2012 Oct;35(10):1693-9. doi: 10.1007/s12272-012-1000-3, PMID 23139119.

Mayer G, Rohrbach F, Potzsch B, Muller J. Aptamer-based modulation of blood coagulation. Hamostaseologie. 2011 Nov;31(4):258-63. doi: 10.5482/ha-1156, PMID 22065102.

Esposito CL, Catuogno S, de Franciscis V, Cerchia L. New insight into clinical development of nucleic acid aptamers. Discov Med. 2011 Jun;11(61):487-96. PMID 21712014.

Cerchia L, Esposito CL, Camorani S, Catuogno S, Franciscis V. Coupling aptamers to short interfering RNAs as therapeutics. Pharmaceuticals (Basel). 2011 Oct 27;4(11):1434-49. doi: 10.3390/ph4111434, PMID 27721331.

Byun J. Recent progress and opportunities for nucleic acid aptamers. Life (Basel). 2021 Feb 28;11(3):193. doi: 10.3390/life11030193, PMID 33671039.

Published

07-01-2024

How to Cite

REDDY, M. R., GUBBIYAPPA, S. K., RASHEED, S. H., & PARAMESHWAR, K. (2024). APTAMERS: NANOMATERIALS AS A POTENTIAL AGENT FOR ANTIVIRAL THERAPEUTIC DRUG DELIVERY DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW. International Journal of Applied Pharmaceutics, 16(1), 33–50. https://doi.org/10.22159/ijap.2024v16i1.48266

Issue

Section

Review Article(s)