A SYSTEMATIC REVIEW ON SUPERSATURABLE SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM: A POTENTIAL STRATEGY FOR DRUGS WITH POOR ORAL BIOAVAILABILITY

Authors

  • MUTHADI RADHIKA REDDY GITAM Institute of Pharmacy (Deemed to Be University), Rushikonda, Visakhapatnam, Andhra Pradesh, India, Department of Pharmaceutics, Guru Nanak Institute of Technical Campus, Hyderabad, Telangana, India https://orcid.org/0000-0001-8205-4915
  • KUMAR SHIVA GUBBIYAPPA GITAM School of Pharmacy (Deemed to Be University), Hyderabad, Telangana, India

DOI:

https://doi.org/10.22159/ijap.2022v14i3.44178

Keywords:

Su-SNEDDS, Supersaturation, Bioavailability, Precipitation inhibitors, Cancer, Poorly aqueous solubility, Nanotechnology

Abstract

The most fundamental important extensive constitutive of drug molecules to be available for systemic absorption is aqueous solubility; subsequently, that is the nature of GIT fluid. When the drug molecules become solubilized, it has to reach the systemic circulation via the biological membrane. The solubility problem of many effective pharmaceutical molecules is still one of the major challenges in the formulation of this molecule. Drug molecules that belong to class II have a problem in bioavailability mainly due to low aqueous solubility and the rate-limiting step is the dissolution process and so electing of suitable drug delivery and proper additives are decisive to overcome this major obstruction and promote the fraction that will reach the systemic circulation. Among the different lipid-based systems, the su-SNEDDSs have gained attention because the inclusion of precipitation inhibitors within su-SNEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This enhances the bioavailability of drugs and minimizes the variability of exposure. Nowadays, supersaturable self-nano emulsifying and nano lipid-based drug delivery systems have constrained a substantial concern from pharmaceutical scientists for managing the oral delivery of poorly water-soluble compounds. By following oral administration, self-nano emulsifying drug delivery systems show complex aqueous dispersion and digestion in the GIT and enduring intestinal lymphatic transport, exorbitant pre-absorptive metabolism by gut membrane-bound cytochrome enzymes and preventing P-gp mediated drug efflux.

Mostly these processes result in drug supersaturation, which leads to increased absorption or the high drug concentrations may cause precipitation with capricious and variable oral bioavailability. This procession review briefly summarized drug supersaturation obtained from self-nano emulsifying and other lipid-based formulations and this review also delineate the effects of numerous physiological factors and the probable interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SNEDDS and focuses on reviewing the application of su-SNEDDS in enhancing the solubility and bioavailability of anti-cancer drugs in cancer therapy.

Downloads

Download data is not yet available.

References

Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. International Journal of Pharmaceutics. 1994;106(1):15-23. doi: 10.1016/0378-5173(94)90271-2.

Misal RS, Potphode VR, Mahajan VR. Review on: new approaches in self-micro-emulsifying drug delivery system. Res J Pharm Technol. 2017;10(4):1215-24. doi: 10.5958/0974-360X.2017.00218.9.

Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 2009;26(5):427-521. doi: 10.1615/ critrevtherdrugcarriersyst.v26.i5.10, PMID 20136631.

Boyd BJ, Bergström CAS, Vinarov Z, Kuentz M, Brouwers J, Augustijns P, Brandl M, Bernkop-Schnurch A, Shrestha N, Preat V, Mullertz A, Bauer Brandl A, Jannin V. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. doi: 10.1016/j.ejps.2019.104967.

Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/a:1016212804288, PMID 7617530.

Danafar H, Rostamizadeh K, Hamidi M. Polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as carrier for delivery of hydrophilic and hydrophobic drugs: a comparison study. J Pharm Investig. 2018;48(3):381-91. doi: 10.1007/s40005-017-0334-8.

Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid-based drug delivery systems; present status and current trends. Adv Drug Deliv Rev. 2019;142:35-49. doi: 10.1016/j.addr.2019.06.010, PMID 31265861.

Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from the pharmacokinetic point of view. Drug Deliv. 2016;23(9):3639-52. doi: 10.1080/10717544.2016.1214990, PMID 27685505.

Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv. 2015;22(6):675-90. doi: 10.3109/10717544.2014.896058, PMID 24670091.

Burdock GA, Carabin IG. Generally recognized as safe (GRAS): history and description. Toxicol Lett. 2004;150(1):3-18. doi: 10.1016/j.toxlet.2003.07.004, PMID 15068820.

Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: opportunities and challenges. Adv Drug Deliv Rev. 2019;142:102-17. doi: 10.1016/j.addr.2018.11.006, PMID 30529138.

Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioeq Avail. 2010;2:28-36.

Rao SV, Shao J. Self-nano emulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development. Int J Pharm. 2008;362(1-2):2-9. doi: 10.1016/j.ijpharm.2008.05.018, PMID 18650038.

Kataoka M, Sugano K, da Costa Mathews C, Wong JW, Jones KL, Masaoka Y, Sakuma S, Yamashita S. Application of dissolution/Permeation system for evaluation of formulation effect on oral absorption of poorly water-soluble drugs in drug development. Pharm Res. 2012;29(6):1485-94. doi: 10.1007/s11095-011-0623-2, PMID 22134778.

Wei Y, Ye X, Shang X, Peng X, Bao Q, Liu M, Guo M, Li F. Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids Surf Physicochem Eng Aspects. 2012;396:22-8. doi: 10.1016/j.colsurfa.2011.12.025.

Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, Surapaneni S. Characterization an optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J Pharm Sci. 2009;98(2):516-28. doi: 10.1002/jps.21451, PMID 18543293.

Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25-32. doi: 10.1016/j.jconrel.2012.02.027, PMID 22405903.

Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Müllertz A, Pouton CW, Porter CJ, LFCS Consortium. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059-76. doi: 10.1007/s11095-013-1038-z, PMID 23661145.

Suys EJA, Chalmers DK, Pouton CW, Porter CJH. Polymeric precipitation inhibitors promote fenofibrate supersaturation and enhance drug absorption from a type IV lipid-based formulation. Mol Pharm. 2018;15(6):2355-71. doi: 10.1021/acs.molpharmaceut.8b00206, PMID 29659287.

Ma X, Ma X, Williams RO. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems: an update. J Pharm Investig. 2018;48:61-75.

Bandyopadhyay S, Katare OP, Singh B. Development of optimized Supersaturable self-nanoemulsifying systems of ezetimibe: effect of polymers and efflux transporters. Expert Opin Drug Deliv. 2014;11(4):479-92. doi: 10.1517/17425247.2014.877885, PMID 24386966.

Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3-4):278-87. doi: 10.1016/j.ejps.2006.04.016, PMID 16815001.

Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549-72. doi: 10.1002/jps.21650, PMID 19373886.

Stillhart C, Kuentz M. Trends in the assessment of drug supersaturation and precipitation in vitro using lipid-based delivery systems. J Pharm Sci. 2016;105(9):2468-76. doi: 10.1016/j.xphs.2016.01.010, PMID 26935881.

Kuentz M. Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv Drug Deliv Rev. 2019;142:50-61. doi: 10.1016/j.addr.2018.11.003, PMID 30445096.

Sinko PJ, Singh Y. Martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

Ye J, Wu H, Huang C, Lin W, Zhang C, Huang B, Lu B, Xu H, Li X, Long X. Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS. Int J Nanomedicine. 2019;14:5623-36. doi: 10.2147/IJN.S203911, PMID 31440045.

Warren DB, Benameur H, Porter CJH, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704-31. doi: 10.3109/1061186X.2010.525652, PMID 20973755.

Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘’self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;(11)11;Suppl 2:S93-8. doi: 10.1016/s0928-0987(00)00167-6, PMID 11033431.

Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–8231-48. doi: 10.1038/nrd2197, PMID 17330072.

Kashchiev D, Van Rosmalen GM. Review: Nucleation in solutions revisited. Cryst Res Technol. 2003;38(78):555-74. doi: 10.1002/crat.200310070.

Gao P, Shi Y. Characterization of supersaturable formulations for improved absorption of poorly soluble drug. AAPS Pharm Sci Tech. 2002;14(14):703-13.

Avdeef A. Absorption and drug development solubility, permeability and charge state. New York: Wiley- Interscience; 2003. p. 91-15.

Xu S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(453):36-43. doi: 10.1016/j.ijpharm.2013.05.013, PMID 23680727.

Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101(101):122-42. doi: 10.1016/j.addr.2016.03.006, PMID 27013254.

Popov A, Schopf L, Bourassa J, Chen H. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int J Pharm. 2016;502(1-2):188-97. doi: 10.1016/j.ijpharm.2016.02.031, PMID 26902722.

Amin OM, Ammar A, Eladawy SA. Febuxostat loaded β-cyclodextrin based nanosponge tablet: an in vitro and in vivo evaluation. J Pharm Investig. 2020;50(4):399-411. doi: 10.1007/s40005-019-00464-w.

Rodriíguez Hornedo N, Murphy D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci. 1999;88(7):651-60. doi: 10.1021/js980490h, PMID 10393562.

Warren DB, Benameur H, Porter CJH, Pouton CVW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18(10):704-31. doi: 10.3109/1061186X.2010.525652, PMID 20973755.

Da Costa Mathews C, Sugano K. Supersaturable formulations. Drug Deliv Syst. 2010;25(4):371-4. doi: 10.2745/dds.25.371.

Chen ZQ, Liu Y, Zhao JH. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomedicine. 2012;7:1115-25.

Park H, Ha ES, Kim MS. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics. 2020;12(4):365. doi: 10.3390/pharmaceutics12040365, PMID 32316199.

Niu B, Singh V, Zhou Y, Wu CY, Pan X, Wu CQuan G, Niu B, Singh V, Zhou Y, Wu CY, Pan X, Wu C. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomed.icine. 2017;12:8801-11. doi: 10.2147/IJN.S149717, PMID 29263669.

Bandyopadhyay S, Katare OP, Singh B. Development of optimized supersaturable self-nanoemulsifying systems of ezetimibe: effect of polymers and efflux transporters. Expert Opin Drug Deliv. 2014;11(4):479-92. doi: 10.1517/17425247.2014.877885, PMID 24386966.

Ujhelyi Z, Vecsernyés M, Feher P, Kosa D, Arany P, Nemes D, Sinka D, Vasvari G, Fenyvesi F, Varadi J, Bacskay I. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol. 2018;(27)27:81–-6. doi: 10.1016/j.ddtec.2018.06.005, PMID 30103867.

Patil P, Joshi P, Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. APS PharmSciTech. 2004;5(3):43–50e42. doi: 10.1208/pt050342, PMID 15760075.

Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm, Elsevier B. V. Amsterdam, the Netherlands. 2000;50(1):179-88. doi: 10.1016/s0939-6411(00)00089-8, PMID 10840200.

Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic-based semisolid self-Nano emulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235(1-2):247-65. doi: 10.1016/s0378-5173(02)00003-0, PMID 11879759.

Ujhelyi Z, Vecsernyes M, Feher P, Kosa D, Arany P, Nemes D, Sinka D, Vasvari G, Fenyvesi F, Varadi J, Bacskay I. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol. 2018;27:81-6. doi: 10.1016/j.ddtec.2018.06.005, PMID 30103867.

Pouton CW, Charman WN. The potential of oily formulations for drug delivery to the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25(1):1-2. doi: 10.1016/S0169-409X(96)00486-3.

Amala FK, Boby JG, Jeny S, Vinod B, Sunil C. A review on self emulsifying nanoemulsion. J Pharm Res. 2017;1(4): 1-17.

Bolzinger Thevenin MA, Grossiord JL, Poelman MC. Characterization of a sucrose ester microemulsion by freeze-fracture electron micrograph and small-angle neutron scattering experiments. Langmuir. 1999;15(7):2307-15. doi: 10.1021/la9804278.

Angell CA, Kadiyala RK, MacFarlane DR. Glass-forming microemulsions. J Phys Chem. 1984;88(20):4593-6. doi: 10.1021/j150664a031.

Barker SA, Craig DQM, Taylor KMG, Hill RM. The study of liposomes by low-frequency dielectric spectroscopy. J Pharm Pharmacol Suppl. 1989;41:1.

Craig D. An investigation into the mechanisms of self-emulsification using particle size analysis and low-frequency dielectric spectroscopy. International Journal of Pharmaceutics. 1995;114(1):103-10. doi: 10.1016/0378-5173(94)00222-Q.

Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs Elsevier BV. Amsterdam, The Netherlands. 2000;50:179-88.

Breitkreitz MC, Sabin GP, Polla G, Poppi RJ. Characterization of semi-solid self-emulsifying drug delivery systems (SEDDS) of atorvastatin calcium by Raman image spectroscopy and chemometrics. J Pharm Biomed Anal. 2013;73:3-12. doi: 10.1016/j.jpba.2012.03.054, PMID 22522036.

Abdalla A, Mader K. Preparation and characterization of a self-emulsifying pellet formulation. Eur J Pharm Biopharm. 2007;66(2):220-6. doi: 10.1016/j.ejpb.2006.11.015, PMID 17196807.

Sonawale P, Patil A, Kamble A, Bhutkar M. Solubility enhancement of lipophilic drugs-solid self micro-emulsifying drug delivery system. Asian J Pharm Technol. 2016;6(3):155. doi: 10.5958/2231-5713.2016.00022.2.

Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in the successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2013;39(1):1-19. doi: 10.3109/03639045.2012.660949, PMID 22372916.

Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CAS, Porter CJH. 50 y of oral lipid-based formulations: Provenance, progress and future perspectives,. Adv Drug Deliv Rev.. 2016;101:167-94. doi: 10.1016/j.addr.2016.04.007, PMID 27089810.

Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW, Porter CJH. Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway. Pharm Res. 2013;30(12):2976-92. doi: 10.1007/s11095-013-1126-0, PMID 23824582.

Stillhart C, Kuentz M. Trends in the assessment of drug supersaturation and precipitation in vitro using lipid-based delivery systems. J Pharm Sci. 2016;105(9):2468-76. doi: 10.1016/j.xphs.2016.01.010, PMID 26935881.

Fatouros DG, Nielsen FS, Douroumis D, Hadjileontiadis LJ, Mullertz A. In vitro–in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks. Eur J Pharm Biopharm. 2008;69(3):887-98. doi: 10.1016/j.ejpb.2008.01.022, PMID 18367386.

Birru WA, Warren DB, Headey SJ, Benameur H, Porter CJH, Pouton CW, Chalmers DK. Computational models of the gastrointestinal Environment. 1. The effect of digestion on the phase behavior of intestinal fluids. Mol Pharm. 2017;14(3):566-79. doi: 10.1021/acs.molpharmaceut.6b00888, PMID 28099023.

Suys EJA, Warren DB, Porter CJH, Benameur H, Pouton CW, Chalmers DK. Computational models of the intestinal Environment. 3. The impact of cholesterol content and pH on mixed micelle colloids. Mol Pharm. 2017;14(11):3684-97. doi: 10.1021/acs.molpharmaceut.7b00446, PMID 28980815.

Mosgaard MD, Sassene PJ, Mu H, Rades T, Müllertz A. High-throughput lipolysis in 96-well plates for rapid screening of lipid-based drug delivery systems. J Pharm Sci. 2017;106(4):1183-6. doi: 10.1016/j.xphs.2016.12.026, PMID 28057543.

Mosgaard MD, Sassene P, Mu H, Rades T, Müllertz A. Development of a high-throughput in vitro intestinal lipolysis model for rapid screening of lipid-based drug delivery systems. Eur J Pharm Biopharm. 2015;94:493-500. doi: 10.1016/j.ejpb.2015.06.028, PMID 26159837.

Keemink J, Maartensson E, Bergstroom CAS. Lipolysis-permeation setup for simultaneous study of digestion and absorption in vitro. Mol Pharm. 2019;16(3):921-30. doi: 10.1021/acs.molpharmaceut.8b00811, PMID 30628771.

Alskar LC, Parrow A, Keemink J, Johansson P, Abrahamsson B, Bergström CAS. Effect of lipids on absorption of carvedilol in dogs: is coadministration of lipids as efficient as a lipid-based formulation? J Control Release. 2019;304:90-100. doi: 10.1016/j.jconrel.2019.04.038, PMID 31047962.

Crum MF, Trevaskis NL, Williams HD, Pouton CW, Porter CJH. A new in vitro lipid digestion-in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations. Pharm Res. 2016;33(4):970-82. doi: 10.1007/s11095-015-1843-7, PMID 26703975.

Nikolakakis I, Partheniadis I. Self-emulsifying granules and pellets: Composition and formation mechanisms for instant or controlled release. Pharmaceutics. 2017;9(4):50. doi: 10.3390/pharmaceutics9040050, PMID 29099779.

Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res. 2013;30(12):2993-3017. doi: 10.1007/s11095-013-1107-3, PMID 23775443.

Warren DB, Benameur H, Porter CJ, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: A mechanistic basis for utility. J Drug Target. 2010;18(10):704-31. doi: 10.3109/1061186X.2010.525652, PMID 20973755.

Kaur G, Chandel P, Hari Kumar SL. Formulation development of self-Nano emulsifying drug delivery system (SNEDDS) of celecoxib for improvement of oral bioavailability. Pharmacophore. 2013;4(4):120-5.

Yahaya ZS, Oyi AR, Allagh TS, Abdulsamad A. Development and characterization of self-nano emulsifying drug delivery system of ibuprofen. J Pharma Res Int. 2018;23(2):1-31. doi: 10.9734/JPRI/2018/43090.

Quan G, Niu B, Singh V, Zhou Y, Wu CY, Pan X, Wu C. Supersaturable solid self-micro emulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomedicine. 2017;12(8801).

Dokania S, Joshi AK. Self-micro emulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv. 2015;22(6):675-90. doi: 10.3109/10717544.2014.896058, PMID 24670091.

Chae GS, Lee JS, Kim SH, Seo KS, Kim MS, Lee HB, Khang G. Enhancement of the stability of BCNU using self-emulsifying drug delivery systems (SEDDS) and in vitro antitumor activity of self-emulsified BCNU-loaded PLGA wafer. Int J Pharm. 2005;301(1-2):6-14. doi: 10.1016/j.ijpharm.2005.03.034, PMID 16024190.

Kim JY, Ku YS. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying system containing indomethacin to rats. Int J Pharm. 2000;194(1):81-9. doi: 10.1016/s0378-5173(99)00367-1, PMID 10601687.

Lee KH, Park C, Oh G, Park JB, Lee BJ. New blends of hydroxypropyl methylcellulose and gelucire 44/14: physical property and controlled release of drugs with different solubility. J Pharm Investig. 2018;48(3):313-21. doi: 10.1007/s40005-017-0322-z.

Dawaba HM, Dawaba AM. Development and evaluation of extended-release ciprofloxacin HCl ocular inserts employing natural and synthetic film-forming agents. J Pharm Investig. 2019;49(2):245-57. doi: 10.1007/s40005-018-0400-x.

Hajjar B, Zier KI, Khalid N, Azarmi S, Lobenberg R. Evaluation of a micro emulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig. 2018;48(3):351-62. doi: 10.1007/s40005-017-0327-7.

Singh D, Bedi N, Tiwary AK. Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. J Pharm Investig. 2018;48(5):509-6. doi: 10.1007/s40005-017-0357-1.

Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res. 2013;30(12):2993-3017. doi: 10.1007/s11095-013-1107-3, PMID 23775443.

Anton N, Vandamme TF. The universality of low-energy nano-emulsification. Int J Pharm. 2009;377(1-2):142-7. doi: 10.1016/j.ijpharm.2009.05.014, PMID 19454306.

Sadurní N, Solans C, Azemar N, Garcia-Celma MJ. Studies on the formation of O/W nano-emulsions by low-energy emulsification methods suitable for pharmaceutical applications. Eur J Pharm Sci. 2005;26(5):438-45. doi: 10.1016/j.ejps.2005.08.001, PMID 16153811.

Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: Ooptimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231-48. doi: 10.1038/nrd2197, PMID 17330072.

Gade AV, Salunkhe KS, Chaudhari SR, Gadge PB, Dighe GS, Amit Asati A. Review on, self-micro emulsifying drug delivery system. Am J Pharm Tech Res. 2015;5(1):51-66.

Pallavi M, Nigade SL, Patil Shradha S, Tiwari. Self-emulsifying drug delivery system (SEDDS)-a review. Int J Pharm Biol Sci. 2012;2(2):42-52.

Biradar SV, Dhumal RS, Paradkar AR. Rheological Iinvestigation of Sself-emulsification process: effect of co-surfactant. J Pharm Pharm Sci. 2009;12(2):164-74. doi: 10.18433/j3qc7x, PMID 19732494.

Do Thi TD, Van Speybroeck M, Barillaro V, Martens J, Annaert P, Augustijns P, Van Humbeeck J, Vermant J, Van den Mooter G. Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS. Eur J Pharm Sci. 2009;38(5):479-88. doi: 10.1016/j.ejps.2009.09.012, PMID 19782131.

Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012;14(4):703-13. doi: 10.1208/s12248-012-9389-7, PMID 22798021.

Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215-24. doi: 10.1016/j.ijpharm.2013.03.054, PMID 23578826.

Li P, Hynes SR, Haefele TF, Pudipeddi M, Royce AE, Serajuddin AT. Development of clinical dosage forms for a poorly water-soluble drug II: Formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug. J Pharm Sci. 2009;98(5):1750-64. doi: 10.1002/jps.21547, PMID 18781639.

Serajuddin A, Li P, Haefele T. Development of lipid-based drug delivery systems for poorly water-soluble drugs as viable oral dosage forms-present status and future prospects. Am Pharm Rev. 2008;11:34-42.

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-micro emulsifying drug delivery system. International J Nanomedicine. 2012;7:1115-25. doi: 10.2147/IJN.S28761, PMID 22403491.

Bevernage J, Hens B, Brouwers J, Tack J, Annaert P, Augustijns P. Supersaturation in human gastric fluids. Eur J Pharm Biopharm. 2012;81(1):184-9. doi: 10.1016/j.ejpb.2012.01.017, PMID 22342777.

Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34(8):890-902. doi: 10.1080/03639040801929273, PMID 18608468.

Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition—impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12(6):3133-43. doi: 10.1021/cg300325p.

Xie S, Poornachary SK, Chow PS, Tan RBH. Direct precipitation of micronsize salbutamol sulfate: new insights into the action of surfactants and polymeric additives. Cryst Growth Des. 2008;10(8):3363-70.

Plaizier Vercammen JA. Interaction of povidone with aromatic compounds IV: effects of macromolecule molecular weight, solvent dielectric constant, and ligand solubility on complex formation. J Pharm Sci. 1983;72(9):1042-4. doi: 10.1002/jps.2600720920, PMID 6631691.

Garekani HA, Ford JL, Rubinstein MH, Rajabi-Siahboomi AR. Highly compressible paracetamol: I: crystallization and characterization. Int J Pharm. 2000;208(1-2):87-99. doi: 10.1016/s0378-5173(00)00550-0, PMID 11064214.

Palmelund H, Madsen CM, Plum J, Mullertz A, Rades T. Studying the propensity of compounds to supersaturate: a practical and broadly applicable approach. J Pharm Sci. 2016;105(10):3021-9. doi: 10.1016/j.xphs.2016.06.016, PMID 27488902.

Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003-19. doi: 10.1021/mp8000793, PMID 19040386.

Overhoff KA, McConville JT, Yang W, Johnston KP, Peters JI, Williams RO. Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm Res. 2008;25(1):167-75. doi: 10.1007/s11095-007-9417-y, PMID 17968635.

Rodriguez CH, Scamehorn JF. Kinetics of precipitation of surfactants. II. Anionic surfactant mixtures. J Surfact Deterg. 2001;4(1):15-26. doi: 10.1007/s11743-001-0156-6.

Dai WG, Dong LC, Li S, Deng ZY. Combination of pluronic/vitamin E TPGS as a potential inhibitor of drug precipitation. Int J Pharm. 2008;355(1-2):31-7. doi: 10.1016/j.ijpharm.2007.12.015, PMID 18299178.

Loftsson T, Vogensen SB, Brewster ME, Konraodsdottir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007;96(10):2532-46. doi: 10.1002/jps.20992, PMID 17630644.

Dash RN, Mohammed H, Humaira T. Design, optimization, and evaluation of ezetimibe solid supersaturatable self-nano emulsifying drug delivery for enhanced solubility and dissolution. J Pharma Investig. 2016 Apr 1;46(2):153-68. doi: 10.1007/s40005-015-0225-9.

Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharma Biopharma. 2011;79(2):250-7. doi: 10.1016/j.ejpb.2011.04.012, PMID 21550401.

Seo YG, Kim DW, Yousaf AM, Park JH, Chang PS, Baek HH, Lim SJ, Kim JO, Yong CS, Choi HG. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterization and pharmacokinetics. J Microencapsul. 2015;32(5):503-10. doi: 10.3109/02652048.2015.1057252, PMID 26079598.

Yeom DW, Chae BR, Kim JH, Chae JS, Shin DJ, Kim CH, Kim SR, Choi JH, Song SH, Oh D, Sohn SI, Choi YW. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability. Oncotarget. 2017;8(55):94297-316. doi: 10.18632/oncotarget.21691, PMID 29212229.

Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1-2):166-72. doi: 10.1016/j.ijpharm.2006.08.038, PMID 17010543.

Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443-8. doi: 10.1016/j.jcis.2008.10.077, PMID 19038395.

Rege BD, Kao JPY, Polli JE. Effects of nonionic surfactants on membrane transporters in caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4-5):237-46. doi: 10.1016/s0928-0987(02)00055-6, PMID 12208453.

Dixit RP, Nagarsenker MS. Formulation and in vivo evaluation of self-nanoemulsifying granules for oral delivery of a combination of ezetimibe and simvastatin. Drug Dev Ind Pharm. 2008;34(12):1285-96. doi: 10.1080/03639040802071570, PMID 18720144.

Srikanth Reddy S, Suresh Gande S. A comprehensive review on self-nano emulsifying drug delivery systems: advancements and applications. Int J Pharm Sci and Drug Res. 2020;12(5):1-8.

Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267(1-2):79-91. doi: 10.1016/j.ijpharm.2003.07.010, PMID 14602386.

Zhang N, Zhang W, Jin Y, Quan DQ. Studies on preparation of carbamazepine (CBZ) supersaturate self-micro emulsifying (S-SMEDDS) formulation and relative bioavailability in beagle dogs. Pharm Dev Technol. 2011;16(4):415-21. doi: 10.3109/10837451003774419, PMID 20433250.

Tajarobi F, Larsson A, Matic H, Abrahmsen-Alami S. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm. 2011;78(1):125-33. doi: 10.1016/j.ejpb.2010.11.020, PMID 21168491.

Tian F, Saville DJ, Gordon KC, Strachan CJ, Zeitler JA, Sandler N, Rades T. The influence of various excipients on the conversion kinetics of carbamazepine polymorphs in aqueous suspension. J Pharm Pharmacol. 2007;59(2):193–20193-201. doi: 10.1211/jpp.59.2.0006, PMID 17270073.

Chauhan H, Hui-Gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci. 2013;102(6):1924-35. doi: 10.1002/jps.23539, PMID 23580406.

Curatolo W, Nightingale JA, Herbig SM. Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26(6):1419-31. doi: 10.1007/s11095-009-9852-z, PMID 19277850.

Bi M, Kyad A, Kiang YH, Alvarez Nunez F, Alvarez F. Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation. AAPS PharmSciTech. 2011;12(4):1157-62. doi: 10.1208/s12249-011-9679-x, PMID 21913050.

Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, Loftsson T. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci. 2008;34(2-3):94-103. doi: 10.1016/j.ejps.2008.02.007, PMID 18420390.

Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond). 2009;4(8):857-60. doi: 10.2217/nnm.09.75, PMID 19958220.

Wang X, Jiang S, Wang X, Liao J, Yin Z. Preparation and evaluation of nnattokinase-loaded self-double-emulsifying drug delivery system. Asian J Pharm Sci. 2015;10(5):386-95. doi: 10.1016/j.ajps.2015.04.005.

Shima M, Tanaka M, Fujii T, Egawa K, Kimura Y, Adachi S, Matsuno R. Oral administration of insulin included in fine W/O/W emulsions to rats. Food Hydrocoll. 2006;20(4):523-31. doi: 10.1016/j.foodhyd.2005.05.002.

Hoormann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions- A review. J Control Release. 2016;223:85-98. doi: 10.1016/j.jconrel.2015.12.016, PMID 26699427.

Nikonenko B, Reddy VM, Bogatcheva E, Protopopova M, Einck L, Nacy CA. Therapeutic efficacy of SQ641-NE against mycobacterium tuberculosis mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(1):587-9. doi: 10.1128/AAC.01254-13, PMID 24145521.

Hunter AC, Elsom J, Wibroe PP, Moghimi SM. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysio-logicalpathophysiological perspective. Nanomedicine: Nanotechnology Biology and Medicine. 2012;(8)8:S5-20S5-S20. doi: 10.1016/j.nano.2012.07.005.

Siena S, Doebele RC, Shaw AT, Karapetis CS, Tan DS, Cho BC, Kim D, Ahn M, Krebs M, Goto K, Garrido Lopez P, Farago AF, Loong HHF, Tosi D, Barve MA, Simmons BP, Ye C, Eng S, Drilon AE. Efficacy of entrectinib in patients (PTS) with solid tumors and central nervous system (CNS) metastases: integrated analysis from three clinical trials. J Clin Oncol. 2019;(37)37(15_Suppl):3017. doi: 10.1200/JCO.2019.37.15_suppl.3017.

Merz V, Zecchetto C, Melisi D. Pemigatinib, A potent inhibitor of FGFRs for the treatment of cholangiocarcinoma. Future Oncol. 2021;17(4):389-402. doi: 10.2217/fon-2020-0726, PMID 33034201.

Hoy SM. Pemigatinib: first approval. Drugs. 2020;80(9):923-9. doi: 10.1007/s40265-020-01330-y, PMID 32472305.

Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, Paulson AS, Borad MJ, Gallinson D, Murphy AG, Oh DY, Dotan E, Catenacci DV, Van Cutsem E, Ji T, Lihou CF, Zhen H, Féliz L, Vogel A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671-84. doi: 10.1016/S1470-2045(20)30109-1, PMID 32203698.

Romero D. Benefit from pemigatinib in cholangiocarcinoma. Nat Rev Clin Oncol. 2020;17(6):337. doi: 10.1038/s41571-020-0369-z, PMID 32300194.

Singh G, Pai RS. In vitro and in vivo performance of supersaturable self-nanoemulsifying system of trans-resveratrol. Artif Cells Nanomed Biotechnol. 2016;44(2):510-6. doi: 10.3109/21691401.2014.966192, PMID 25331709.

Tung NT, Tran CS, Nguyen HA, Nguyen TD, Chi SC, Pham DV, Bui QD, Ho XH. Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm. 2019;555:63-76. doi: 10.1016/j.ijpharm.2018.11.036, PMID 30448315.

Lee DR, Ho MJ, Jung HJ, Cho HR, Park JS, Yoon SH, Choi YS, Choi YW, Oh CH, Kang MJ. Enhanced dissolution and oral absorption of tacrolimus by supersaturable self-emulsifying drug delivery system. Int J Nanomed.icine. 2016;11:1109-17. doi: 10.2147/IJN.S102991, PMID 27051286.

Shin DJ, Chae BR, Goo YT, Yoon HY, Kim CH, Sohn SI, Oh D, Lee A, Song SH, Choi YW. Improved dissolution and oral bioavailability of valsartan using a solidified supersaturable self-microemulsifying drug delivery system containing gelucire® 44/14/14. Pharmaceutics. 2019;(11)11(2):58. doi: 10.3390/pharmaceutics11020058, PMID 30708963.

Kim MS, Ha ES, Choo GH, Baek IH. Preparation and in vivo evaluation of a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system. Int J Mol Sci. 2015;16(5):10821-33. doi: 10.3390/ijms160510821, PMID 25984604.

Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, Choi YW. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm. 2015;478(1):341-7. doi: 10.1016/j.ijpharm.2014.11.060, PMID 25437113.

Zheng D, Lv C, Sun X, Wang J, Zhao Z. Preparation of a supersaturatable self-microemulsion as drug delivery system for ellagic acid and evaluation of its antioxidant activities. J Drug Deliv Sci Technol. 2019;53. doi: 10.1016/j.jddst.2019.101209.

Jaisamut P, Wiwattanawongsa K, Graidist P, Sangsen Y, Wiwattanapatapee R. Enhanced oral bioavailability of curcumin using a supersaturatable self-microemulsifying system incorporating a hydrophilic polymer; in vitro and in vivo investigations. APS PharmSciTech. 2018;19(2):730-40. doi: 10.1208/s12249-017-0857-3, PMID 28975598.

Lee DR, Ho MJ, Choi YW, Kang MJ. A polyvinylpyrrolidone-based supersaturable self-emulsifying drug delivery system for enhanced dissolution of cyclosporine a. Polymers. 2017;9(4):124. doi: 10.3390/polym9040124, PMID 30970802.

Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, Porter CJ. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm. 2012;9(7):2063-79. doi: 10.1021/mp300164u, PMID 22656917.

Chen Y, Chen C, Zheng J, Chen Z, Shi Q, Liu H. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability. Biol Pharm Bull. 2011;34(2):278-86. doi: 10.1248/bpb.34.278, PMID 21415541.

Baek Ih B, Ha ES, Yoo JW, Jung Y, Kim MS. Design of a gelatin microparticle containing self-microemulsifying formulation for enhanced oral bioavailability of dutasteride. Drug Des Dev Ther. 2015;9:323.

Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458-65. doi: 10.1021/mp100114a, PMID 20704265.

Chavan RB, Modi SR, Bansal AK. Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. Int J Pharm. 2015;495(1):374-84. doi: 10.1016/j.ijpharm.2015.09.011, PMID 26364711.

Song WH, Yeom DW, Lee DH, Lee KM, Yoo HJ, Chae BR, Song SH, Choi YW. In situ intestinal permeability and in vivo oral bioavailability of celecoxib in supersaturating self-emulsifying drug delivery system. Arch Pharmacal Res. 2014;37(5):626-35. doi: 10.1007/s12272-013-0202-7, PMID 23852645.

Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo MS, Hageman MJ. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386-98. doi: 10.1002/jps.10511, PMID 14603484.

Gao P, Guyton ME, Huang T, Bauer JM, Stefanski KJ, Lu Q. Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturatable formulations. Drug Dev Ind Pharm. 2004;30(2):221-9. doi: 10.1081/ddc-120028718, PMID 15089057.

Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomed.icine. 2012;7:1115-25. doi: 10.2147/IJN.S28761, PMID 22403491.

Dash RN, Mohammed H, Humaira T, Reddy AV. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J Drug Deliv Sci Technol. 2015;28:28-36. doi: 10.1016/j.jddst.2015.05.004.

Zadeha BSM, Salimi A, Aminib R. Novel super saturated self-emulsifying system for oral delivery of griseofulvin: design, preparation and ex-vivo intestinal permeability. J Rep Pharm Sci. 2017;6:180-90.

Araujo JM, Gomez AC, Pinto JA, Rolfo C, Raez LE. Profile of entrectinib in the treatment of ROS1-positive non-small cell lung cancer: evidence to date. Hematol Oncol Stem Cell Ther. 2021;14(3):192-8. doi: 10.1016/j.hemonc.2020.11.005. PMID 33290717.

Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, Ballinari D, Ciomei M, Texido G, Degrassi A, Avanzi N, Amboldi N, Saccardo MB, Casero D, Orsini P, Bandiera T, Mologni L, Anderson D, Wei G, Harris J, Vernier JM, Li G, Felder E, Donati D, Isacchi A, Pesenti E, Magnaghi P, Galvani A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther. 2016;15(4):628-39. doi: 10.1158/1535-7163.MCT-15-0758, PMID 26939704.

Liu D, Offin M, Harnicar S, Li BT, Drilon A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther Clin Risk Manag. 2018;14:1247-52. doi: 10.2147/TCRM.S147381, PMID 30050303.

Drilon A, Sankhala KK, Liu SV, Cho BC, Blakely C, Chee CE. STARTRK-2: A global phase 2, open-label, basket study of entrectinib in patients with locally advanced or metastatic solid tumors harboring TRK, ROS1, or ALK gene fusions. Cancer Res. 2017;77:CT060.

Mah PT, Novakovic D, Saarinen J, Van Landeghem S, Peltonen L, Laaksonen T, Isomaki A, Strachan CJ. Elucidation of compression-Induced surface crystallization in amorphous tablets using sum frequency generation (SFG) microscopy. Pharm Res. 2017;34(5):957-70. doi: 10.1007/s11095-016-2046-6, PMID 27738954.

Loftsson T. The effect of water-soluble polymers on aqueous solubility of drugs. International Journal of Pharmaceutics. 1996;127(2):293-6. doi: 10.1016/0378-5173(95)04207-5.

Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325(2):404-13. doi: 10.1016/j.jcis.2008.05.034, PMID 18561941.

Rosenthal E, Poizot Martin I, Saint Marc T, Spano JP, Cacoub P, DNX Study Group, DNX Study Group. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol. 2002 Feb;25(1):57-9. doi: 10.1097/00000421-200202000-00012, PMID 11823698.

Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi'’s sarcoma. Int J Nanomedicine. 2007;2(3):277-88. PMID 18019828.

Ando K, Mori K, Corradini N, Redini F, Heymann D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Ex opinion on. Pharmacotherapy. 2011;12(2):285-92.

Frampton JE. Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma drugs. Drugs. 2020;80(10):1007-18. doi: 10.1007/s40265-020-01336-6, PMID 32557396.

Lyseng Williamson KA, Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a guide to its use in various malignancies. BioDrugs. 2013 Oct;27(5):533-40. doi: 10.1007/s40259-013-0070-1, PMID 24018470.

Vieira Pinheiro JP, Müller HJ, Schwabe D, Gunkel M, Casimiro da Palma J, Henze G, von Schutz V, Winkelhorst M, Würthwein G, Boos J. Drug monitoring of low-dose PEG-asparaginase (Oncaspar) in children with relapsed acute lymphoblastic leukaemia. Br J Haematol. 2001 Apr;113(1):115-9. doi: 10.1046/j.1365-2141.2001.02680.x, PMID 11328290.

Kripp M, Hofheinz RD. Treatment of lymphomatous and leukemic menin-gitis with liposomal encapsulated cytarabine. International Journal of Nanomedicine. 2008;3(4):97-401.

Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, Richards K, Widemann BC, Wayne AS. Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a Phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. Pediatr Blood Cancer. 2016 Jun;63(6):997-1005. doi: 10.1002/pbc.25937, PMID 26891067.

Shea JE, Nam KH, Rapoport N, Scaife CL. Genexol inhibits primary tumour growth and metastases in gemcitabine-resistant pancreatic ductal adenocarcinoma adenocarcinoma. Int Hepato Pan Biliary Assoc. 2011;13(3):153-7.

Yardley DA. Nab-paclitaxel mechanisms of action and delivery. J Control Release. 2013;170(3):365-72. doi: 10.1016/j.jconrel.2013.05.041, PMID 23770008.

Squires H, Stevenson M, Simpson E, Harvey R, Stevens J. Trastuzumab emtansine for ttreating HER2-positive, unresectable, locally advanced or metastatic breast cancer after treatment with trastuzumab and a taxane: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics. 2016;34(7):673-80. doi: 10.1007/s40273-016-0386-z, PMID 26892972.

Kleinberg L. Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for role in era of standard adjuvant temozolomide. Core Evidence. 2012;7:115-30. doi: 10.2147/CE.S23244, PMID 23118709.

Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi'’s sarcoma. Drugs. 2011 Dec 24;71(18):2531-58. doi: 10.2165/11207510-000000000-00000, PMID 22141391.

Gonçalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS. 2017;31(14):1903-16. doi: 10.1097/QAD.0000000000001567, PMID 28609402.

Raj TA, Smith AM, Moore AS. Vincristine sulfate liposomal injection for acute lymphoblastic leukemia. Int J Nanomedicine. 2013;8:4361-9. doi: 10.2147/IJN.S54657, PMID 24232122.

IRinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP, Gulyas S, Mitchell DY, Herrera R, Sebolt-Leopold JS, Meyer MB. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004 Nov 15;22(22):4456-62. doi: 10.1200/JCO.2004.01.185, PMID 15483017.

Von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, Fischer HH, Jacot W, Conlin AK, Arce-Salinas C, Wapnir IL, Jackisch C, DiGiovanna MP, Fasching PA, Crown JP, Wülfing P, Shao Z, Rota Caremoli E, Wu H, Lam LH, Tesarowski D, Smitt M, Douthwaite H, Singel SM, Geyer CE Jr;, KATHERINE Investigators. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617-28. doi: 10.1056/NEJMoa1814017, PMID 30516102.

Talibi SS, Talibi SS, Aweid B, Aweid O. Prospective therapies for high-grade glial tumours: A literature review. Annals of Med Surg (Lond). 2014;3(3):55-9. doi: 10.1016/j.amsu.2014.04.003, PMID 25568787.

Cimino C. Essential oils: pharmaceutical applications and encapsulation strategies into lipid-based delivery systems.” Pharmaceutics Vol. 2021;13(3):327.

Regina Brigelius Flohe R, Frank J Kelly FJ, Jukka T Salonen JT, Jiri Neuzil J, Jean-Marc Zingg JM, Angelo Azzi A. The European perspective on vitamin E: current knowledge and future research. The American Journal of Clinical Nutrition. 2002;76(4):703-16. doi: 10.1093/ajcn/76.4.703, PMID 12324281.

Alshamsan A, Kazi M, Badran MM, Alanazi FK. Role of alternative lipid eexcipients in the design of self-nanoemulsifying formulations for fenofibrate: characterization, in vitro dispersion, digestion and ex vivo gut permeation studies. Frontiers in Pharmacology. 2018;9:1219. doi: 10.3389/fphar.2018.01219, PMID 30455642.

Praful D. Role components in the formation of self-microemulsifying drug delivery systems. Ind J Pharm Sci. 2015;77(3):249-57.

Hamid KM, Wais M, Sawant G. A review on nanoemulsions: formulation, composition, and applications. Asian J Pharm Clin Res. 2021;14:22-8. doi: 10.22159/ajpcr.2021.v14i4.40859.

Charman WN, Porter CJ, Mithani S, Dressman JB. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269-82. doi: 10.1021/js960085v, PMID 9050793.

Sonia Anand S, Rishikesh Gupta R, Prajapati SKSk P. Self-microemulsifying drug delivery system. Asian J Pharm Clin Res. 2016;9:33-8. doi: 10.22159/ajpcr.2016.v9s2.13180.

Pelletta MA, Castellano S, Hadgraft J, Davis AF, Castellanob S, Hadgrafta J, Davisc AF. The penetration of supersaturated solutions of piroxicam across silicone membranes and human skin in vitro. Journal of Controlled Release. 1997;46(3):205-14. doi: 10.1016/S0168-3659(96)01595-7.

Quan G, Niu B, Singh V, Zhou Y, Wu CY, Pan X, Wu C. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. International Journal of Nanomedicine. 2017;12:8801-11. doi: 10.2147/IJN.S149717, PMID 29263669.

David E, Alonzo DE, Raina S, Zhou D, Gao Y, Zhang GGZ, Taylor LSAlonzo DE, Raina S, Zhou D, Gao Y, Zhang GGZ, Taylor LS. Characterizing the impact of hydroxypropylmethyl cellulose on the growth and nucleation kinetics of felodipine from supersaturated solutions. Cryst Growth Des. 2012;12(3):1538-47. doi: 10.1021/cg201590j.

Kumar A, Sharma S, Kamble R. Self-emulsifying drug delivery system (SEDDS): future aspects. Int J Pharm Pharm Sci. 2010;2:7-13.

Mistry R, Sheth NS. Self-emulsifying drug delivery system. Int J Pharm Pharm Sci. 2011;3:23-8.

Agueros M, Zabaleta V, Espuelas S, Campanero MA, Irache JM. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J Control Release. 2010;145(1):2-8. doi: 10.1016/j.jconrel.2010.03.012. PMID 20347897.

Zadeha BSM, Salimi A, Aminib R. Novel super saturated self-emulsifying system for oral delivery of griseofulvin: design, preparation and ex-vivo intestinal permeability. Journal of Reports in Pharmaceutical Sciences. 2017;6(2):180-90.

Lee DR, Ho MJ, Choi YW, Kang MJ. A polyvinylpyrrolidone-based supersaturable self-emulsifying drug delivery system for enhanced dissolution of cyclosporine a. Polymers. 2017;9(4):1-11. doi: 10.3390/polym9040124, PMID 30970802.

Jackson MJ, Kestur US, Hussain MA, Taylor LS,. Dissolution of danazol amorphous solid dispersions: supersaturation and phase behavior as a function of drug loading and polymer type. Mol Pharm Pharm. 2016;13(1):223-31. doi: 10.1021/acs.molpharmaceut.5b00652, PMID 26618718.

Sugihara H, Taylor LS. Evaluation of pazopanib phase behavior following ph-induced supersaturation. Mol Pharmaceutics 2018;15(4):1690-9. doi: 10.1021/acs.molpharmaceut.8b00081, PMID 29502424.

Published

07-05-2022

How to Cite

REDDY, M. R., & GUBBIYAPPA, K. S. (2022). A SYSTEMATIC REVIEW ON SUPERSATURABLE SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM: A POTENTIAL STRATEGY FOR DRUGS WITH POOR ORAL BIOAVAILABILITY. International Journal of Applied Pharmaceutics, 14(3), 16–33. https://doi.org/10.22159/ijap.2022v14i3.44178

Issue

Section

Review Article(s)