GLIBENCLAMIDE TRANSETHOSOME PATCH FOR TRANSDERMAL DELIVERY: FORMULATION AND EVALUATIONS

Authors

  • NURUL ARFIYANTI YUSUF Doctoral Program, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia. Sekolah Tinggi Ilmu Farmasi Makassar, Jalan Perintis Kemerdekaan Km. 13,7, Makassar-90242, South Sulawesi, Indonesia https://orcid.org/0000-0002-4417-9263
  • MARLINE ABDASSAH Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia
  • RACHMAT MAULUDIN School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung-40132, West Java, Indonesia https://orcid.org/0000-0002-3729-0254
  • ANIS YOHANA CHAERUNISAA Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor-45363, West Java, Indonesia https://orcid.org/0000-0002-4985-8206

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48455

Keywords:

Glibenclamide, Transethosome patch, HPMC, PVP K30

Abstract

Objective: The glibenclamide transethosome patch is a patch containing glibenclamide encapsulated in nanoparticle-based vesicles that can improve the penetration of the compound into the skin. The research work aims to evaluate glibenclamide transethosome patches using HPMC and PVP as matrix polymers and glibenclamide as a drug model.

Methods: Glibenclamide transethosome patches were prepared using a solvent evaporation technique. Evaluations that have been carried out to assess the stability of the patch include weight variation, folding endurance, thickness, moisture absorption, moisture content, drug content, and drug release in vitro glibenclamide transethosome was carried out using Franz diffusion cell.

Results: The results of the evaluation of the glibenclamide transethosome patch showed a patch weight uniformity between 0.051-0.063 g and a CV (Coefficient of Variation) value of less than 5%. The resulting folding resistance of the patch can withstand without tearing over 200 folds. The thickness of the glibenclamide transethosome patch is between 0.14-0.24 cm. The moisture absorption capacity of the patch is between 2.1-23.5%. The moisture content of the patch is between 4.7-7.4%. The drug content of the patch is between 6.7–12.7 g/cm2. Drug release from the patch was between 45.9-82.1% after 480 min. Overall, in the moisture absorption test (F3; F4; F5), moisture content, drug content, and drug release (F1) gave significantly different results (p<0.05).

Conclusion: The glibenclamide transethosome patch showed evaluation results that met the requirements and were stable during the stability test. The polymer combinations also significantly influence drug release during stability tests.

Downloads

Download data is not yet available.

References

Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438-70. doi: 10.3390/pharmaceutics 7040438, PMID 26506371.

Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393-407. doi: 10.1517/17425247.2014.875528, PMID 24392787.

Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm. 2015;89:312-28. doi: 10.1016/j.ejpb.2014.12.020, PMID 25541440.

Abdulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279-304. doi: 10.2147/IJN.S105016. PMID 27307730.

Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine. 2019;14:1953-68. doi: 10.2147/IJN.S196771. PMID 30936696.

Chauhan SB, Naved T, Parvez N. Formulation and development of transdermal drug delivery system of ethinylestradiol and testosterone: in vitro evaluation. Int J App Pharm. 2019;11(1):55-60, doi: 10.22159/ijap.2019v11i1.28564.

Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012 Feb;8(2):237-49. doi: 10.1016/j.nano.2011.06.004. PMID 21704600.

Tuan Mahmood TM, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623-37. doi: 10.1016/j.ejps.2013.05.005. PMID 23680534.

Yusuf NA, Abdassah M, Mauludin R, Joni IM, Chaerunisaa AY. Transfersome: a vesicular drug delivery with enhanced permeation. J Adv Pharm Educ Res. 2021;11(3):48-57. doi: 10.51847/vrYnt7vHhp.

Hashmat D, Shoaib MH, Ali FR, Siddiqui F. Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers. PLOS ONE. 2020;15(2):e0228908. doi: 10.1371/journal.pone.0228908. PMID 32107483.

Mutalik S, Udupa N. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci. 2004;93(6):1577-94. doi: 10.1002/jps.20058, PMID 15124215.

Singh SK, Verma PR, Razdan B. Glibenclamide-loaded self-nano emulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm. 2010;36(8):933-45. doi: 10.3109/03639040903585143, PMID 20184416.

Ali HSM, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci. 2017;106(1):402-10. doi: 10.1016/j.xphs.2016.10.010, PMID 27866687.

Bragagni M, Maestrelli F, Mennini N, Ghelardini C, Mura P. Liposomal formulations of prilocaine: effect of complexation with hydroxypropyl-ß-cyclodextrin on drug anesthetic efficacy. J Liposome Res. 2010 Dec;20(4):315-22. doi: 10.3109/08982100903544169, PMID 20109055.

Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG. Development, characterization, and skin delivery studies of related ultra deformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837-51. doi: 10.2147/IJN.S86186. PMID 26425085.

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58-71. doi: 10.1208/s12249-016-0489-z. PMID 26868380.

Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials (Basel). 2021;11(10). doi: 10.3390/nano11102557, PMID 34685005.

Diaz del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release. 2007;122(2):135-40. doi: 10.1016/j.jconrel.2007.05.017, PMID 17688966.

Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M. Development of mucoadhesive patches for buccal administration of ibuprofen. J Control Release. 2004;99(1):73-82. doi: 10.1016/j.jconrel.2004.06.005. PMID 15342182.

Franco P, De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers. 2020;12(5). doi: 10.3390/polym12051114. PMID 32414187.

Sun Z, Zhang H, He H, Sun L, Zhang X, Wang Q. Cooperative effect of polyvinylpyrrolidone and HPMC E5 on dissolution and bioavailability of nimodipine solid dispersions and tablets. Asian J Pharm Sci. 2019;14(6):668-76. doi: 10.1016/j.ajps.2018.08.005. PMID 32104493.

John L, Kumar A, Samuel S. Formulation and evaluation of amlodipine transdermal patches using ethyl cellulose. Int Res J Pharm. 2013;4(10):84-8. doi: 10.7897/2230-8407.041019.

Pendekal SM, K Tegginamat P. Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine. Acta Pharm Sin B. 2012;2(3):318-24. doi: 10.1016/j.apsb.2011.12.012.

Shinde A, Garala K, More H. Development and characterization of transdermal therapeutics system of tramadol hydrochloride. Asian J Pharm. 2008;2(4):265. doi: 10.4103/0973-8398.45044.

Patel DP, Setty CM, Mistry GN, Patel SL, Patel TJ, Mistry PC. Development and evaluation of ethyl cellulose-based transdermal films of furosemide for improved in vitro skin permeation. AAPS PharmSciTech. 2009;10(2):437-42. doi: 10.1208/s12249-009-9224-3, PMID 19381831.

Patel RP, Patel G, Baria A. Formulation and evaluation of transdermal patch of aceclofenac. Int J Drug Deliv. 2011;1(1):41-51. doi: 10.5138/ijdd.2009.0975.0215.01005.

Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019 May 30;563:293-303. doi: 10.1016/j.ijpharm.2019.04.001. PMID 30951860.

Kruengtip O, Chootip K, Temkitthawon P, Changwichit K, Chuprajob T, Changtam C. Effect of curcumin and its analogs on rat pulmonary artery. TOPROCJ. 2013;4(1):87. doi: 10.2174/2210289201304010087.

Badr Eldin SM, Ahmed OAA. Optimized nano-transpersonal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation. Drug Des Devel Ther. 2016 Apr 5;10:1323-33. doi: 10.2147/DDDT.S103122. PMID 27103786.

Singh A, Bali A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J Anal Sci Technol. 2016;7(1). doi: 10.1186/s40543-016-0105-6.

Nandi S, Mondal S. Fabrication and evaluation of matrix type novel transdermal patch loaded with tramadol hydrochloride. Turk J Pharm Sci. 2022;19(5):572-82. doi: 10.4274/tjps.galenos.2021.43678. PMID 36317940.

Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Bhagat PR, Chidambaram K. 3-biopolymer composites with high dielectric performance: interface engineering. Biopolym Compos Electron. 2017:27-128. doi: 10.1016/B978-0-12-809261-3.00003-6.

Suksaeree J, Siripornpinyo P, Chaiprasit S. Formulation, characterization, and in vitro evaluation of transdermal patches for inhibiting crystallization of mefenamic acid. J Drug Deliv. 2017;2017:7358042. doi: 10.1155/2017/7358042, PMID 29259828.

Jaipakdee N, Pongjanyakul T, Limpongsa E. Preparation and characterization of poly (vinyl alcohol)-poly (vinyl pyrrolidone) mucoadhesive buccal patches for delivery of lidocaine HCl. Int J App Pharm. 2018;10(1):115-23. doi: 10.22159/ijap.2018v10i1.23208.

Published

07-09-2023

How to Cite

YUSUF, N. A., ABDASSAH, M., MAULUDIN, R., & CHAERUNISAA, A. Y. (2023). GLIBENCLAMIDE TRANSETHOSOME PATCH FOR TRANSDERMAL DELIVERY: FORMULATION AND EVALUATIONS. International Journal of Applied Pharmaceutics, 15(5), 303–309. https://doi.org/10.22159/ijap.2023v15i5.48455

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 3 > >>