• ISKANDARSYAH Faculty of Pharmacy Universitas Indonesia, Depok-16424, West Java, Indonesia https://orcid.org/0000-0003-2095-2386
  • SAORI SALMA ADELIA Faculty of Pharmacy Universitas Indonesia, Depok-16424, West Java, Indonesia
  • INDAH APRIANTI Faculty of Pharmacy Universitas Indonesia, Depok-16424, West Java, Indonesia https://orcid.org/0009-0000-0850-8480




Franz diffusion cell, Capsaicin, In vitro penetration test, Skin fat membrane


Objective: Capsaicin is a highly lipophilic substance that generally uses an organic cosolvent added to diffusion medium in penetration tests to increase penetration by fluidizing fat. This study aims to determine the effect of subcutaneous fat on the penetration of capsaicin as lipophilic substances formulated into transfersome and compare it to hydrophilic substances, namely vitamin C.

Methods: The thin layer method was used to develop the transfersome formulation using Phospholipon 90G and Tween 80. Vesicle size, zeta potential, deformability index, morphology, and entrapment efficiency were all characterized. The transfersome suspension was then developed into a gel formulation using 1% carbomer. The in vitro penetration test was performed using a Franz diffusion cell of rat skin with and without subcutaneous fat.

Results: The cumulative amount of penetration on fat-free membranes compared to membranes with fat for capsaicin transfersome gel 920.28±3.42 μg/cm2 and 762.22±1.73 μg/cm2, respectively, then for non-transfersome capsaicin gel was 833.33±0.84 μg/cm2 and 595.80±0.32 μg/cm2 respectively, and for vitamin C non-transfer some gel 776.45±1.19 μg/cm2 and 654.69±3.36 μg/cm2 respectively.

Conclusion: According to these results, it can be concluded that the presence of subcutaneous fat affects inhibiting the penetration of lipophilic substances.


Download data is not yet available.


Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: a review. Skin Res Technol. 2021;27(3):299-308. doi: 10.1111/srt.12968, PMID 33095948.

Roohnikan M, Laszlo E, Babity S, Brambilla D. A snapshot of transdermal and topical drug delivery research in Canada. Pharmaceutics. 2019;11(6). doi: 10.3390/pharmaceutics11060256, PMID 31159422.

Das C, Olmsted PD. The physics of stratum corneum lipid membranes. Philos Trans A Math Phys Eng Sci. 2016;374:2072. doi: 10.1098/rsta.2015.0126, PMID 27298438.

Razavi H, Janfaza S. Ethosome: a nanocarrier for transdermal drug delivery. J Paramed Sci. 2015;6(2):38-43.

Kim EJ, Kim YK, Kim JE, Kim S, Kim MK, Park CH. UV modulation of subcutaneous fat metabolism. J Invest Dermatol. 2011;131(8):1720-6. doi: 10.1038/jid.2011.106, PMID 21562570.

Richard C, Cassel S, Blanzat M. Vesicular systems for dermal and transdermal drug delivery. RSC Adv. 2020;11(1):442-51. doi: 10.1039/d0ra09561c, PMID 35423006.

Salamanca CH, Barrera Ocampo A, Lasso JC, Camacho N, Yarce CJ. Franz diffusion cell approach for pre-formulation characterisation of ketoprofen semi-solid dosage forms. Pharmaceutics. 2018;10(3):1-10. doi: 10.3390/pharmaceutics10030148, PMID 30189634.

Katakam LNR, Katari NK. Development of in vitro release testing method for permethrin cream formulation using franz vertical diffusion cell apparatus by HPLC. Talanta Open. Vol. 4. Elsevier; 2021. p. 100056. doi: 10.1016/j.talo.2021.100056.

Annisa V. Review Artikel: metode untuk meningkatkan absorpsi obat transdermal. J Islamic Pharm. 2020;5(1):18. doi: 10.18860/jip.v5i1.9157.

Anand P, Bley K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8 % patch. Br J Anaesth. 2011;107(4):490-502. doi: 10.1093/bja/aer260, PMID 21852280.

Yang N, Galves C, Racioni Goncalves AC, Chen J, Fisk I. Impact of capsaicin on aroma release: in vitro and in vivo analysis. Food Res Int. 2020 Jul 1;133. doi: 10.1016/j.foodres.2020.109197, PMID 32466935.

Benson HAE. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727-37. doi: 10.1517/17425247.3.6.727, PMID 17076595.

Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837-51. doi: 10.2147/IJN.S86186, PMID 26425085.

Juliantoni Y, Hajrin W, Subaidah WA. Nanoparticle formula optimization of Juwet seeds extracts (Syzygium cumini) using simplex lattice design method. J Biologi Tropis. 2020;20(3):416-22. doi: 10.29303/jbt.v20i3.2124.

Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9):1-23. doi: 10.3390/pharmaceutics12090855, PMID 32916782.

Yusuf M, Sharma V, Pathak K. Nanovesicles for transdermal delivery of felodipine: development, characterization, and pharmacokinetics. Int J Pharm Investig. 2014;4(3):119-30. doi: 10.4103/2230-973X.138342, PMID 25126525.

Anggraini W, Sagita E, Iskandarsyah I. Effect of hydrophilicity surfactants toward characterization and in vitro transfersomes penetration in gels using franz diffusion test. Int J App Pharm. 2017;9:3200. doi: 10.22159/ijap.2017.v9s1.67_74.

Srifiana Y, Amalia A, Yusnia Y. Stabilitas fisik transethosome kurkumin yang menggunakan kombinasi surfaktan tween 60 dan span 60 [Physical stability of curcumin transethosome using combinations tween 60 and span 60 as surfactant]. J Ilmu Kefarmasian Indones. 2020;18(2):184-91. doi: 10.35814/jifi.v18i2.796.

Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci. 2021 Nov 26;22(23):12789. doi: 10.3390/ijms222312789, PMID 34884592.

Gonzalez Rodriguez ML, Arroyo CM, Cozar Bernal MJ, Gonzalez R PL, Leon JM, Calle M, Canca D, Rabasco AM. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm. 2016 Oct 2;42(10):1683–94. doi: 10.3109/03639045.2016.1165691. PMID: 26981839.

Khan I, Needham R, Yousaf S, Houacine C, Islam Y, Bnyan R. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery. J Drug Deliv Sci Technol. 2021 Dec 1:66. doi: 10.1016/j.jddst.2021.102822.

Levisky JA, Bowerman DL, Jenkins WW, Karch SB. Drug deposition in adipose tissue and skin: evidence for an alternative source of positive sweat patch tests. Forensic Sci Int. 2000;110(1):35-46. doi: 10.1016/s0379-0738(00)00146-8, PMID 10802199.

N’Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19(12):20780-807. doi: 10.3390/molecules191220780, PMID 25514222.

Azizah N, Sagita E, Iskandarsyah I. In vitro penetration tests of transethosome gel preparations containing capsaicin. Int J App Pharm. 2017 Oct 1;9:116-9. doi: 10.22159/ijap.2017.v9s1.68_75.

Bizley SC, Dudhia J, Smith RKW, Williams AC. Transdermal drug delivery in horses: an in vitro comparison of skin structure and permeation of two model drugs at various anatomical sites. Vet Dermatol. 2023 Jun 1. doi: 10.1111/vde.13162, PMID 37185892.

Wilkinson SC, Maas WJM, Nielsen JB, Greaves LC, van de Sandt JJM, Williams FM. Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies. Int Arch Occup Environ Health. 2006 May;79(5):405-13. doi: 10.1007/s00420-005-0056-5, PMID 16435152.



How to Cite

ISKANDARSYAH, ADELIA, S. S., & APRIANTI, I. (2023). EFFECT OF SKIN FAT ON CAPSAICIN TRANSFERSOME GEL: IN VITRO PENETRATION STUDIES USING FRANZ DIFFUSION CELLS. International Journal of Applied Pharmaceutics, 15(5), 123–127. https://doi.org/10.22159/ijap.2023v15i5.48458



Original Article(s)