DIFLUNISAL TRANSETHOSOMES FOR TRANSDERMAL DELIVERY: FORMULATION AND CHARACTERIZATION

Authors

  • INDAH APRIANTI Faculty of Pharmacy Universitas Indonesia, Depok-16424, West Java, Indonesia https://orcid.org/0009-0000-0850-8480
  • ISKANDARSYAH Faculty of Pharmacy Universitas Indonesia, Depok-16424, West Java, Indonesia https://orcid.org/0000-0003-2095-2386
  • HERI SETIAWAN Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok-16424, West Java, Indonesia. National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok-16424, West Java, Indonesia https://orcid.org/0000-0002-0170-9885

DOI:

https://doi.org/10.22159/ijap.2023v15i3.47691

Keywords:

Transethosome, Diflunisal, Transdermal

Abstract

Objective: The work aimed to obtain an optimum formula of diflunisal transethosome by varying the types and concentrations of edge activators and optimizing the method of preparations.

Methods: Sonication amplitude and sonication time were optimized based on vesicle size and polydispersity index (PDI). Transethosome formulation using different types and concentrations of edge activators would be characterized, including vesicle size, PDI, zeta potential, morphology, entrapment efficiency, and deformability index, which were carried out using the optimum sonication method to formulate the optimum formula.

Results: The result indicates that 30% sonication amplitude for 5 min resulted in the smallest vesicle size with the lowest PDI. Also, F4 containing span 80 as edge activators at a concentration of 0.75% achieved the most favorable outcome, with a spherical shape, vesicle size of 75.32 nm, a PDI of 0.247, a zeta potential of-32.93mV, entrapment efficiency of 75.66% and deformability index of 40.45.

Conclusion: Sonication time of 5 min with an amplitude of 30% is proven to produce optimum diflunisal transethosome, and in comparison to other vesicles, diflunisal transethosome using span 80 was able to have excellent vesicle characteristics, making it extremely promising to be developed as a transdermal delivery system.

Downloads

Download data is not yet available.

References

Lanas A. NSAIDs and Aspirin. Berlin: Springer; 2016.

Hannah J, Ruyle WV, Jones H, Matzuk AR, Kelly KW, Witzel BE. Discovery of diflunisal. Br J Clin Pharmacol. 1977;4Suppl 1:7S-13S. doi: 10.1111/j.1365-2125.1977.tb04508.x. PMID 328036.

PubChem. Bethesda: National Library of Medicine (US). National Center for Biotechnology Information; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/diflunisal. [Last accessed on 19 Mar 2023]

Weiner CP, Buhimschi C. Diflunisal. In: Weiner CP, Buhimschi C, editors. Drugs for pregnant and lactating women. Amsterdam: Elsevier; 2009. p. 252-338. doi: 10.1016/B978-1-4160-4013-2.00004-1.

Kuznetsova DA, Vasileva LA, Gaynanova GA, Vasilieva EA, Lenina OA, Nizameev IR. Cationic liposomes mediated transdermal delivery of meloxicam and ketoprofen: optimization of the composition, in vitro and in vivo assessment of efficiency. Int J Pharm. 2021 Aug 10;605:120803. doi: 10.1016/j.ijpharm.2021.120803, PMID 34144135.

Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758-91. doi: 10.1007/s13346-021-00909-6, PMID 33474709.

MN J, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022 Oct 1:1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm. 2022;611:121290. doi: 10.1016/j.ijpharm.2021.121290, PMID 34788674.

Carita AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem. 2018;25(5):606-35. doi: 10.2174/0929867324666171009120154, PMID 28990515.

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58-71. doi: 10.1208/s12249-016-0489-z, PMID 26868380.

Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int J Pharm. 2021;610:121226. doi: 10.1016/j.ijpharm.2021.121226. PMID 34710540.

Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine. 2019;14:1953-68. doi: 10.2147/IJN.S196771. PMID 30936696.

Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019 May 30;563:293-303. doi: 10.1016/j.ijpharm.2019.04.001. PMID 30951860.

Kaur A, Bhoop BS, Chhibber S, Sharma G, Gondil VS, Katare OP. Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis. Int J Pharm. 2017 Nov 25;533(1):206-24. doi: 10.1016/j.ijpharm.2017.09.041, PMID 28943207.

Lin HW, Xie QC, Huang X, Ban JF, Wang B, Wei X. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int J Nanomedicine. 2018 Feb 8;13:831-42. doi: 10.2147/IJN.S150086. PMID 29467573.

El-Sonbaty MM, Akl MA, El-Say KM, Kassem AA. Does the technical methodology influence the quality attributes and the potential of skin permeation of luliconazole loaded transethosomes? J Drug Deliv Sci Technol. 2022 Feb 1;68. doi: 10.1016/j.jddst.2022.103096.

Silva R, Ferreira H, Little C, Cavaco Paulo A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason Sonochem. 2010;17(3):628-32. doi: 10.1016/j.ultsonch.2009.10.010, PMID 19914854.

Shah TR, Koten H, Ali HM. Performance effecting parameters of hybrid nanofluids. Hybrid nanofluids for convection heat transfer. Elsevier; 2020. p. 179-213. doi: 10.1016/b978-0-12-819280-1.00005-7.

Gulzar S, Benjakul S. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chem. 2020 Apr 25;310:125916. doi: 10.1016/j.foodchem.2019.125916, PMID 31838370.

Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795-813. doi: 10.2147/DDDT.S158018. PMID 29670336.

Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010 Sep;11(3):1119-27. doi: 10.1208/s12249-010-9480-2, PMID 20635228.

Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved leishmania major: a preliminary study. J Microencapsul. 2012 May;29(3):219-24. doi: 10.3109/02652048.2011.642016, PMID 22150018.

Azizah N, Sagita E, Iskandarsyah I. In vitro penetration tests of transethosome gel preparations containing capsaicin. Int J App Pharm. 2017 Oct 1;9:116-9. doi: 10.22159/ijap.2017.v9s1.68_75.

Al Shuwaili AH, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016 May 1;102:101-14. doi: 10.1016/j.ejpb.2016.02.013. PMID 26925505.

Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods. Pharmaceutics. 2018 Dec 1;10(4). doi: 10.3390/pharmaceutics10040185, PMID 30322124.

Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F. Surfactant effects on lipid-based vesicles properties. J Pharm Sci. 2018;107(5):1237-46. doi: 10.1016/j.xphs.2018.01.005, PMID 29336980.

Tatode AA, Patil AT, Umekar MJ, Telange DR. Investigation of effect of phospholipids on physical and functional characterization of paclitaxel liposomes. Int J Pharm Pharm Sci. 2017 Dec 1;9(12):141. doi: 10.22159/ijpps.2017v9i12.20749.

Abdulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279-304. doi: 10.2147/IJN.S105016. PMID 27307730.

Sharma K, Nilsuwan K, Ma L, Benjakul S. Effect of liposomal encapsulation and ultrasonication on debittering of protein hydrolysate and plastein from salmon frame. Foods. 2023 Feb 9;12(4):761. doi: 10.3390/foods12040761, PMID 36832836.

Iskandarsyah I, Masrijal CDP, Harmita H. Effects of sonication on size distribution and entrapment of lynestrenol transferosome. Int J App Pharm 2020;12(1):245-7. doi: 10.22159/ijap.2020.v12s1.FF053.

Mahmoud DB, ElMeshad AN, Fadel M, Tawfik A, Ramez SA. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: optimization and clinical study. Int J Pharm. 2022 Feb 1;614:121459. doi: 10.1016/j.ijpharm.2022.121459, PMID 35026313.

Published

07-05-2023

How to Cite

APRIANTI, I., ISKANDARSYAH, & SETIAWAN, H. (2023). DIFLUNISAL TRANSETHOSOMES FOR TRANSDERMAL DELIVERY: FORMULATION AND CHARACTERIZATION. International Journal of Applied Pharmaceutics, 15(3), 61–66. https://doi.org/10.22159/ijap.2023v15i3.47691

Issue

Section

Original Article(s)